Advertisement

Root Hairs pp 45-64 | Cite as

Auxin and Root Hair Morphogenesis

  • S. H. Lee
  • H.-T. ChoEmail author
Part of the Plant Cell Monographs book series (CELLMONO, volume 12)

Abstract

Auxin is a potent hormonal effector of root hair development. A plethora of genetic and pharmacological studies have revealed that aberrations in auxin availability or signaling can cause defects in root hair growth and morphology. Recently identified components of auxin signaling and auxin transport have been implicated in root hair morphogenesis. The alteration of root hair morphogenesis by auxin also enables this single cell system to serve as an in planta biological marker through which the action mechanism of auxin can be examined.

Keywords

Hair Cell Root Hair Auxin Transport Auxin Efflux Root Hair Development 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by grants from the Korea Research Foundation (KRF-2004-041-C00366) and the Korea Science and Engineering Foundation (KOSEF) (R01-2007-000-10041-0).

References

  1. Anthony Henriques R, Helfer A, Mészáros T, Rios G, Testerink C, Munnik T, Deák M, Koncz C, Bögre L (2004) A protein kinase target of a PDK1 signalling pathway is involved in root hair growth in Arabidopsis. EMBO J 23:572–581PubMedCrossRefGoogle Scholar
  2. Badescu GO, Napier RM (2006) Receptors for auxin: will it all end in TIRs? Trends Plant Sci 11:217–223PubMedCrossRefGoogle Scholar
  3. Benjamins R, Quint A, Weijers D, Hooykaas P, Offringa R (2001) The PINOID protein kinase regulates organ development in Arabidopsis by enhancing polar auxin transport. Development 128:4057–4067PubMedGoogle Scholar
  4. Bibikova T, Gilroy S (2003) Root hair development. J Plant Growth Regul 21:383–415CrossRefGoogle Scholar
  5. Bibikova TN, Jacob T, Dahse I, Gilroy S (1998) Localized changes in apoplastic and cytoplasmic pH are associated with root hair initiation in Arabidopsis thaliana. Development 125:2925–2934PubMedGoogle Scholar
  6. Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J, Heidstra R, Aida M, Palme K, Schere B (2005) The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433:39–44PubMedCrossRefGoogle Scholar
  7. Boerjan W, Cervera MT, Delarue M, Beeckman T, Dewitte W, Bellini C, Caboche M, Van Onckelen H, Van Montagu M, Inze D (1995) Superroot, a recessive mutation in Arabidopsis, confers auxin overproduction. Plant Cell 7:1405–1419PubMedCrossRefGoogle Scholar
  8. Bögre L, Okresz L, Henriques R, Anthony RG (2003) Growth signalling pathways in Arabidopsis and the AGC protein kinases. Trends Plant Sci 8:424–431PubMedCrossRefGoogle Scholar
  9. Bostick M, Lochhead SR, Honda A, Palmer S, Callis J (2004) Related to ubiquitin 1 and 2 are redundant and essential and regulate vegetative growth, auxin signalling, and ethylene production in Arabidopsis. Plant Cell 16:2418–2432PubMedCrossRefGoogle Scholar
  10. Cernac A, Lincoln C, Lammer D, Estelle M (1997) The SAR1 gene of Arabidopsis acts downstream of the AXR1 gene in auxin response. Development 124:1583–1591PubMedGoogle Scholar
  11. Chen R, Hilson P, Sedbrook J, Rosen E, Caspar T, Masson PH (1998) The Arabidopsis thaliana AGRAVITROPIC1 gene encodes a component of the polar-auxin-transport efflux carrier. Proc Natl Acad Sci USA 95:15112–15117PubMedCrossRefGoogle Scholar
  12. Cho H-T, Cosgrove DJ (2002) The regulation of Arabidopsis root hair initiation and expansin gene expression. Plant Cell 14:3237–3253PubMedCrossRefGoogle Scholar
  13. Cho M, Lee OR, Ganguly A, Cho H-T (in press) Auxin signaling: long and short. J Plant Biol 50Google Scholar
  14. del Pozo JC, Estelle M (1999) The Arabidopsis cullin AtCUL1 is modified by the ubiquitin-related protein RUB1. Proc Natl Acad Sci USA 96:15342–15347PubMedCrossRefGoogle Scholar
  15. del Pozo JC, Timpte C, Tan S, Callis J, Estelle M (1998) The ubiquitin-related protein RUB1 and auxin response in Arabidopsis. Science 280:1760–1763CrossRefGoogle Scholar
  16. Dharmasiri N, Dharmasiri S, Estelle M (2005a) The F-box protein TIR1 is an auxin receptor. Nature 435:441–445PubMedCrossRefGoogle Scholar
  17. Dharmasiri N, Dharmasiri S, Weijers D, Lechner E, Yamada M, Hobbie L, Ehrismann JS, Jürgens G, Estelle M (2005b) Plant development is regulated by a family of auxin receptor F-box proteins. Dev Cell 9:109–119PubMedCrossRefGoogle Scholar
  18. Fischer U, Ikeda Y, Ljung K, Serralbo O, Singh M, Heidstra R, Palme K, Scheres B, Grebe M (2006) Vectorial information for Arabidopsis planar polarity is mediated by combined AUX1, EIN2, and GNOM activity. Curr Biol 16:2143–2149PubMedCrossRefGoogle Scholar
  19. Fischer U, Ikeda Y, Grebe M (2007) Planar polarity of root hair positioning in Arabidopsis. Biochem Soc Trans 35:149–151PubMedCrossRefGoogle Scholar
  20. Friml J, Yang X, Michniewicz M, Weijers D, Quint A, Tietz O, Benjamin R, Ouwerkerk PB, Ljung K, Sandberg G, Hooykaas PJ, Palme K, Offringa R (2004) A PINOID-dependent binary switch in apical-basal PIN polar targeting directs auxin efflux. Science 306:862–865PubMedCrossRefGoogle Scholar
  21. Fukaki H, Tameda S, Masuda H, Tasaka M (2002) Lateral root formation in blocked by a gain-of-function mutation in the SOLITARY-ROOT/IAA14 gene of Arabidopsis. Plant J 29:153–168PubMedCrossRefGoogle Scholar
  22. Fukaki H, Nakao Y, Okushima Y, Theologis A, Tasaka M (2005) Tissue-specific expression of stabilized SOLITARY-ROOT/IAA14 alters lateral root development in Arabidopsis. Plant J 44:382–395PubMedCrossRefGoogle Scholar
  23. Geisler M, Blakeslee JJ, Bouchard R, Lee O, Vincenzetti V, Bandyopadhyay A, Peer WA, Bailly A, Richards EL, Edjendal KF, Smith AP, Baroux C, Grossniklaus U, Müller A, Hrycyna CA, Dudler R, Murphy AS, Martinoia E (2005) Cellular efflux of auxin catalyzed by the Arabidopsis MDR/PGP transporter AtPGP1. Plant J 44:179–194PubMedCrossRefGoogle Scholar
  24. Geldner N, Anders N, Wolters H, Keicher J, Kornberger W, Muller P, Delbarre A, Ueda T, Nakano A, Jürgens G (2003) The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell 112:219–230PubMedCrossRefGoogle Scholar
  25. Geldner N, Friml J, Stierhof YD, Jürgens G, Palme K (2001) Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature 413:425–428PubMedCrossRefGoogle Scholar
  26. Gray WM, del Pozo JC, Walker L, Hobbie L, Risseeuw E, Banks T, Crosby WL, Yang M, Ma H, Estelle M (1999) Identification of an SCF ubiquitin-ligase complex required for auxin response in Arabidopsis thaliana. Genes Dev 13:1678–1691PubMedCrossRefGoogle Scholar
  27. Gray WM, Kepinski S, Rouse D, Leyser O, Estelle M (2001) Auxin regulates SCFTIR1 -dependent degradation of AUX/IAA proteins. Nature 414:271–276PubMedCrossRefGoogle Scholar
  28. Grebe M (2004) Ups and downs of tissue and planar polarity in plants. Bioessays 26:719–729PubMedCrossRefGoogle Scholar
  29. Grebe M, Friml J, Swarup R, Ljung K, Sandberg G, Terlou M, Palme K, Bennett MJ, Scheres B (2002) Cell polarity signaling in Arabidopsis involves a BFA-sensitive auxin influx pathway. Curr Biol 12:329–334PubMedCrossRefGoogle Scholar
  30. Grierson C, Schiefelbein J (2002) Root hairs. In: Somerville CR, Meyerowitz EM (eds) The Arabidopsis book. American Society of Plant Biologists, Rockville, doi:10.1199/tab.0060. http://www.aspb.org/publications/arabidopsis/ Google Scholar
  31. Hardtke CS, Ckurshumova W, Vidaurre DP, Singh SA, Stamatiou G, Tiwari SB, Hagen G, Guilfoyle TJ, Berleth T (2004) Overlapping and non-redundant functions of the Arabidopsis auxin response factors MONOPTEROS and NONPHOTOTROPIC HYPOCOTYL 4. Development 131:1089–1100PubMedCrossRefGoogle Scholar
  32. Hellmann H, Estelle M (2002) Plant development: regulation by protein degradation. Science 297:793–797PubMedCrossRefGoogle Scholar
  33. Herrmann A, Felle HH (1995) Tip growth in root hair cells of Sinapis alba L.: significance of internal and external Ca2+ and pH. New Phytol 129:523–533CrossRefGoogle Scholar
  34. Jones MA, Shen JJ, Fu Y, Li H, Yang Z, Grierson CS (2002) The Arabidopsis Rop2 GTPase is a positive regulator of both root hair initiation and tip growth. Plant Cell 14:763–776PubMedCrossRefGoogle Scholar
  35. Katsumi M, Izumo M, Ridge RW (2000) Hormonal control of root hair growth and development. In: Ridge RW, Emons AMC (eds) Root hairs. Springer, Berlin Heidelberg New York, pp 101–114Google Scholar
  36. Kepinski S, Leyser O (2005) The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435:446–451PubMedCrossRefGoogle Scholar
  37. Kerr ID, Bennett MJ (2007) New insight into the biochemical mechanisms regulating auxin transport in plants. Biochem J 401:613–622PubMedCrossRefGoogle Scholar
  38. Kim J, Harter K, Theologis A (1997) Protein-protein interactions among the Aux/IAA proteins. Proc Natl Acad Sci USA 94:11786–11791PubMedCrossRefGoogle Scholar
  39. Kim DW, Lee SH, Choi S-B, Won S-K, Heo Y-K, Cho M, Park Y-I, Cho H-T (2006) Functional conservation of a root hair cell-specific cis-element in angiosperms with different root hair distribution patterns. Plant Cell 18:2958–2970PubMedCrossRefGoogle Scholar
  40. Knox K, Grierson CS, Leyser O (2003) AXR3 and SHY2 interact to regulate root hair development. Development 130:5769–5777PubMedCrossRefGoogle Scholar
  41. Lee SH, Cho H-T (2006) PINOID positively regulates auxin efflux in Arabidopsis root hair cells and tobacco cells. Plant Cell 18:1604–1616PubMedCrossRefGoogle Scholar
  42. Leyser O (2006) Dynamic integration of auxin transport and signaling. Curr Biol 16:R424–R433PubMedCrossRefGoogle Scholar
  43. Leyser HMO, Pickett FB, Dharmasiri S, Estelle M (1996) Mutations in the AXR3 gene of Arabidopsis result in altered auxin response including ectopic expression from the SAUR-AC1 promoter. Plant J 10:403–413PubMedCrossRefGoogle Scholar
  44. Lincoln C, Britton JH, Estelle M (1990) Growth and development of the arx1 mutants of Arabidopsis. Plant Cell 2:1071–1080PubMedCrossRefGoogle Scholar
  45. Lomax TL, Muday GK, Rubery P (1995) Auxin transport. In: Davies PJ (ed) Plant hormones. Kluwer, Norwell, pp 509–530Google Scholar
  46. Luschnig C, Gaxiola RA, Grisafi P, Fink GR (1998) EIR1, a root-specific protein involved in auxin transport, is required for gravitropism in Arabidopsis thaliana. Genes Dev 12:175–2187CrossRefGoogle Scholar
  47. Marchant A, Bennett MJ (1998) The Arabidopsis AUX1 gene: a model system to study mRNA processing in plants. Plant Mol Biol 36:463–471PubMedCrossRefGoogle Scholar
  48. Masucci JD, Schiefelbein JW (1994) The rhd6 mutation of Arabidopsis thaliana alters root hair initiation through an auxin- and ethylene associated process. Plant Physiol 106:1335–1346PubMedGoogle Scholar
  49. Masucci JD, Schiefelbein JW (1996) Hormones act downstream of TTG and GL2 to promote root hair outgrowth during epidermis development in the Arabidopsis root. Plant Cell 8:1505–1517PubMedCrossRefGoogle Scholar
  50. McKeon TA, Fernández-Maculet JC, Yang S-F (1995) Biosynthesis and metabolism of ethylene. In: Davies PJ (ed) Plant hormones. Kluwer, Dordrecht, pp 118–139Google Scholar
  51. Molendijk AJ, Bischoff F, Rajendrakumar CS, Friml J, Braun M, Gilroy S, Palme K (2001) Arabidopsis thaliana Rop GTPases are localized to tips of root hairs and control polar growth. EMBO J 20:2779–2788PubMedCrossRefGoogle Scholar
  52. Morris DV, Friml J, Zažímalová E (2004) The transport of auxin. In: Davies PJ (ed) Plant hormones. Kluwer, Dordrecht, pp 437–470Google Scholar
  53. Müller M, Schmidt W (2004) Environmentally induced plasticity of root hair development in Arabidopsis. Plant Physiol 134:409–419PubMedCrossRefGoogle Scholar
  54. Müller A, Guan C, Galweiler L, Tanzler P, Huijser P, Marchant A, Parry G, Bennett M, Wisman E, Palme K (1998) AtPIN2 defines a locus of Arabidopsis for root gravitropism control. EMBO J 17:6903–6911PubMedCrossRefGoogle Scholar
  55. Nagpal P, Walker LM, Young JC, Sonawala A, Timpte C, Estelle M, Reed JW (2000) AXR2 encodes a member of the Aux/IAA protein family. Plant Physiol 123:563–574PubMedCrossRefGoogle Scholar
  56. Napier RM, David KM, Perrot-Rechenmann C (2002) A short history of auxin-binding proteins. Plant Mol Biol 49:339–348PubMedCrossRefGoogle Scholar
  57. Okada K, Shimura Y (1994) Modulation of root growth by physical stimuli. In: Meyerowitz EM, Somerville CR (eds) Arabidopsis. Cold Spring Harbor, New York, pp 665–684Google Scholar
  58. Oyama T, Shimura Y, Okada K (2002) The IRE gene encodes a protein kinase homologue and modulates root hair growth in Arabidopsis. Plant J 30:289–299PubMedCrossRefGoogle Scholar
  59. Parry G, Estelle M (2004) Regulation of cullin-based ubiquitin ligases by the Nedd8/RUB ubiquitin-like proteins. Semin Cell Dev Biol 15:221–229PubMedCrossRefGoogle Scholar
  60. Peterson RL, Stevens KJ (2000) Evidence for the uptake of non-essential and essential nutrient ions by root hairs and their effect on root hair growth. In: Ridge RW, Emons AMC (eds) Root hairs. Springer, Berlin Heidelberg New York, pp 179–195Google Scholar
  61. Petrášek J, Mravec J, Bouchard R, Blakeslee JJ, Abas M, Seifertová D, Wiśniewska J, Tadele Z, Kubeš M, Čovanová M, Dhonukshe P, Skůůpa P, Benková E, Perry L, Křeček P, Lee OR, Fink GR, Geisler M, Murphy AS, Luschnig C, Zažímalová E, Friml J (2006) PIN proteins perform a rate-limiting function in cellular auxin efflux. Science 312:914–918PubMedCrossRefGoogle Scholar
  62. Pitts RJ, Cernac A, Estelle M (1998) Auxin and ethylene promote root hair elongation in Arabidopsis. Plant J 16:553–560PubMedCrossRefGoogle Scholar
  63. Rahman A, Hosokawa S, Oono Y, Amakawa T, Goto N, Tsurumi S (2002) Auxin and ethylene response interactions during Arabidopsis root hair development dissected by auxin influx modulators. Plant Physiol 130:1908–1917PubMedCrossRefGoogle Scholar
  64. Ramos JA, Zenser N, Leyser O, Callis J (2001) Rapid degradation of auxin/indoleacetic acid proteins requires conserved amino acids of domain II and is proteasome dependent. Plant Cell 13:2349–2360PubMedCrossRefGoogle Scholar
  65. Reed JW (2001) Roles and activities of Aux/IAA proteins in Arabidopsis. Trends Plant Sci 6:420–425PubMedCrossRefGoogle Scholar
  66. Rentel MC, Lecourieux D, Ouaked F, Usher SL, Petersen L, Okamoto H, Knight H, Peck SC, Grierson CS, Hirt H, Knight MR (2004) OXI1 kinase is necessary for oxidative burst-mediated signalling in Arabidopsis. Nature 427:858–861PubMedCrossRefGoogle Scholar
  67. Rigas S, Debrosses G, Haralampidis K, Vicente-Agullo F, Feldmann KA, Grabov A, Dolan L, Hatzopoulos P (2001) TRH1 encodes a potassium transporter required for tip growth in Arabidopsis root hairs. Plant Cell 13:139–151PubMedCrossRefGoogle Scholar
  68. Rogg LE, Lasswell J, Bartel B (2001) A gain-of-function mutation in iaa28 suppresses lateral root development. Plant Cell 13:465–480PubMedCrossRefGoogle Scholar
  69. Rouse D, Mackay P, Stirnberg P, Estelle M, Leyser O (1998) Changes in auxin response from mutations in an AUX/IAA gene. Science 279:1371–1373PubMedCrossRefGoogle Scholar
  70. Ruegger M, Dewey E, Gray WM, Hobbie L, Turner J, Estelle M (1998) The TIR1 protein of Arabidopsis functions in auxin response and is related to human SKP2 and yeast Grr1p. Genes Dev 12:198–207PubMedCrossRefGoogle Scholar
  71. Santelia D, Vincenzetti V, Azzarello E, Bovet L, Fukao Y, Düchtig P, Mancuso S, Martinoia E, Geisler M (2005) MDR-Like ABC transporter AtPGP4 is involved in auxin-mediated lateral root and root hair development. FEBS Lett 579:5399–5460PubMedCrossRefGoogle Scholar
  72. Santner AA, Watson JC (2006) The WAG1 and WAG2 protein kinases negatively regulate root waving in Arabidopsis. Plant J 45:752–764PubMedCrossRefGoogle Scholar
  73. Satiat-Jeunemaitre B, Cole L, Bourett T, Howard R, Hawes C (1996) Brefeldin A effects in plant and fungal cells: something new about vesicle trafficking? J Microscopy 181:162–177CrossRefGoogle Scholar
  74. Schiefelbein JW (2000) Constructing a plant cell: the genetic control of root hair development. Plant Physiol 124:1525–1531PubMedCrossRefGoogle Scholar
  75. Schiefelbein J, Lee MM (2006) A novel regulatory circuit specifies cell fate in the Arabidopsis root epidermis. Physiol Plant 126:503–510Google Scholar
  76. Schiefelbein JW, Shipley A, Rowse P (1992) Calcium influx at the tip of growing root-hair cells of Arabidopsis thaliana. Planta 187:455–459CrossRefGoogle Scholar
  77. Soh MS, Hong S-H, Kim BC, Vizir I, Park DH, Choi G, Hong MY, Chung Y-Y, Furuya M, Nam HG (1999) Regulation of both light- and auxin-mediated development by the Arabidopsis IAA3/SHY2 gene. J Plant Biol 42:239–246.CrossRefGoogle Scholar
  78. Steinmann T, Geldner N, Grebe M, Mangold S, Jackson CL, Paris S, Gälweiler L, Palme K, Jürgens G (1999) Coordinated polar localization of auxin efflux carrier PIN1 by GNOM ARF GEF. Science 286:316–318PubMedCrossRefGoogle Scholar
  79. Stepanova AN, Hoyt JM, Hamilton AA, Alonso JM (2005) A link between ethylene and auxin uncovered by the characterization of two root-specific ethylene-insensitive mutants in Arabidopsis. Plant Cell 17:2230–2242PubMedCrossRefGoogle Scholar
  80. Swarup R, Kramer EM, Knox K, Leyser O, Haseloff J, Bhalerao R, Bennett MJ (2005) Root gravitropism requires lateral root cap and epidermal cells for transport and response to a mobile auxin signal. Nat Cell Biol 7:1057–1065PubMedCrossRefGoogle Scholar
  81. Terasaka K, Blakeslee JJ, Titapiwatanakun B, Peer WA, Bandyopadhyay A, Makam SN, Lee OR, Richards EL, Murphy AS, Sato F, Yazaki K (2005) PGP4, an ATP-binding cassette P-glycoprotein, catalyzes auxin transport in Arabidopsis thaliana roots. Plant Cell 17:2922–2939PubMedCrossRefGoogle Scholar
  82. Tian Q, Reed JW (1999) Control of auxin-regulated root development by the Arabidopsis thaliana SHY2/IAA3 gene. Development 126:711–721PubMedGoogle Scholar
  83. Timpte CS, Wilson AK, Estelle M (1992) Effects of the axr2 mutation of Arabidopsis on cell shape in hypocotyl and inflorescence. Planta 188:271–278CrossRefGoogle Scholar
  84. Timpte C, Wilson A, Estelle M (1994) The axr2-1 mutation of Arabidopsis thaliana is a gain-of-function mutation that disrupts an early step in auxin response. Genetics 138:1239–1249PubMedGoogle Scholar
  85. Tiwari SB, Wang X-J, Hagen G, Guilfoyle TJ (2001) Aux/IAA proteins are active repressors and their stability and activity are modulated by auxin. Plant Cell 13:2809–2822PubMedCrossRefGoogle Scholar
  86. Vicente-Agullo F, Rigas S, Desbrosses G, Dolan L, Hatzopoulos P, Grabov A (2004) Potassium carrier TRH1 is required for auxin transport in Arabidopsis roots. Plant J 40:523–535PubMedCrossRefGoogle Scholar
  87. Wilson AK, Pickett FB, Turner JC, Estelle M (1990) A dominant mutation in Arabidopsis confers resistance to auxin, ethylene and abscisic acid. Mol Gen Genet 222:377–383PubMedCrossRefGoogle Scholar
  88. Yamaki K, Hong J, Hiraizumi K, Ahn JW, Zee O, Ohuchi K (2002) Participation of various kinases in staurosporine induced apoptosis of RAW 264.7 cells. J Pharm Pharmacol 54:1535–1544PubMedCrossRefGoogle Scholar
  89. Yamamoto Y, Kamiya N, Morinaka Y, Matsuoka M, Sazuka T (2007) Auxin biosynthesis by the YUCCA genes in rice. Plant Physiol 143:1362–1371PubMedCrossRefGoogle Scholar
  90. Yang Y, Hammes UZ, Taylor CG, Schachtman DP, Nielsen E (2006) High-affinity auxin transport by the AUX1 influx carrier protein. Curr Biol 16:1123–1127PubMedCrossRefGoogle Scholar
  91. Zhao Y, Christensen SK, Fankhauser C, Cashman JR, Cohen JD, Weigel D, Chory J (2001) A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science 291:306–309PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Department of BiologyChungnam National UniversityDaejeonSouth Korea

Personalised recommendations