Skip to main content

Phospholipid Signaling in Root Hair Development

  • Chapter
Root Hairs

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 12))

Abstract

Phospholipids, which are major components of the eukaryotic plasma membrane, play crucial roles in signal transduction, leading to not only total cellular responses via transcriptional regulation but also localized intracellular events such as membrane traffic and cytoskeletal reorganization, both of which underlie polarized cell morphogenesis. Although studies of phospholipid signaling have focused mainly on animals and fungi, evidence for its involvement in plant cell morphogenesis has also been accumulating. Because phospholipids function as site-specific signals on membranes, they likely play pivotal roles in localizing exocytosis and the fine F-actin configuration to regions of cell expansion, such as the tips of growing root hairs. In this chapter, evidence for the involvement of phospholipids in the regulation of root hair tip growth is described, with an emphasis on major signaling phospholipids, phosphoinositides and phosphatidic acid; in addition, a model signal transduction network for root hair tip growth, involving phospholipids, their metabolic enzymes, and their effector proteins is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alessi DR, Deak M, Casamayor A, Caudwell FB, Morrice N, Norman DG, Gaffney P, Reese CB, MacDougall CN, Harison D, Ashworth A, Bownes M (1997) 3-phosphoinositide-dependent protein kinase-1 (PDK1): structural and functional homology with the drosophila DSTPK61 kinase. Curr Biol 7:776–789

    PubMed  CAS  Google Scholar 

  • Alexandre J, Lassalles JF, Kado RD (1990) Opening of Ca2+channels in isolated red beet vacuole membrane by inositol 1,4,5-trisphosphate. Nature 343:567–570

    CAS  Google Scholar 

  • Anderson RA, Boronenkov IV, Doughman SD, Kunz J, Loijens JC (1999) Phosphatidylinositol phosphate kinase, multifaceted family of signaling enzymes. J Biol Chem 274:17794–17805

    PubMed  Google Scholar 

  • Anthony RG, Henriques R, Helfer A, Mezaros T, Rios G, Testerink C, Munnik T, Deak M, Koncz C, Bogre L (2004) A protein kinase target of a PDK1 signalling pathway is involved in root hair growth in Arabidopsis. EMBO J 23:572–581

    PubMed  CAS  Google Scholar 

  • Assaad FF (2008) The membrane dynamics of root hair morphogenesis. In: Emons AMC, Ketelaar T (eds) Root hairs: excellent tools for the study of plant molecular cell biology. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Bagnat M, Simons K (2002) Lipid rafts in protein sorting and cell polarity in budding yeast Saccharomyces cerevisiae. Biol Chem 383:1475–1480

    PubMed  CAS  Google Scholar 

  • Behnia R, Munro S (2005) organelle identity and the signposts for membrane traffic. Nature 438:597–604

    PubMed  CAS  Google Scholar 

  • Berridge MJ, Irvine RF (1984) Inositol triphosphate, a novel second messenger in cellular signal transduction. Nature 312:315–321

    PubMed  CAS  Google Scholar 

  • Bibikova T, Gilroy S (2008) Calcium in root hair growth. In: Emons AMC, Ketelaar T (eds) Root hairs: excellent tools for the study of plant molecular cell biology. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Bohme K, Li Y, Charlot F, Grierson C, Marrocco K, Okada K, Laloue M, Nogue F (2004) The Arabidopsis COW1gene encodes a phosphatidylinositol transfer protein essential for root hair tip growth. Plant J 40:686–698

    PubMed  Google Scholar 

  • Braun M, Baluska F, von Witsch M, Menzel D (1999) Redistribution of actin, profiling and phosphatidylinositol-4,5-bisphosphate in growing and maturing root hairs. Planta 209:435–443

    PubMed  CAS  Google Scholar 

  • Carol RJ, Dolan L (2006) The role of reactive oxygen species in cell growth: lessons from root hairs. J Exp Bot 57:1829–1834

    PubMed  CAS  Google Scholar 

  • Carol RJ, Takeda S, Linstead P, Durrant MC, Kakesova H, Derbyshire P, Crea S, Zarsky V, Dolan L (2005) A RhoGDP dissociation inhibitor spatially regulates growth in root hair cells. Nature 438:1013–1016

    PubMed  CAS  Google Scholar 

  • Chan TO, Rittenhouse SE, Tsichlis PN (1999) AKT/PBK and other D3 phosphoinositide-regulated kinase: kinase activation by phosphoinositide-dependent phosphorylation. Annu Rev Biochem 68:965–1014

    PubMed  CAS  Google Scholar 

  • Charron D, Pingret JL, Chabaud M, Journet EP, Barker DG (2004) Pharmacological evidence that multiple phospholipid signaling pathways link Rhizobium nodulation factor perception in Medicago truncatularoot hairs to intracellular responses, including Ca2+spiking and specific ENDOgene expression. Plant Physiol 136:3582–3593

    PubMed  CAS  Google Scholar 

  • Chen J, Fang YM (2002) A novel pathway regulating the memmalian target of rapamycin (mTOR) signaling. Biochem Pharmacol 64:1071–1077

    PubMed  CAS  Google Scholar 

  • Cockcroft S (2001) Signalling roles of mammalian phospholipase D1 and D2. Cell Mol Life Sci 58:1674–1687

    PubMed  CAS  Google Scholar 

  • Cole RA, Fowler JE (2006) Polarized growth: maintaining focus on the tip. Curr Opin Plant Biol 9:579–588

    PubMed  CAS  Google Scholar 

  • Comer FI, Parent CA (2007) Phosphoinositides specify polarity during epithelial organ development. Cell 128:239–240

    PubMed  CAS  Google Scholar 

  • Cote JF, Motoyama AB, Bush JA, Vuori K (2005) A novel and evolutionarily conserved PtdIns(3,4,5)P3-binding domain is necessary for DOCK180 signalling. Nat Cell Biol 7:797–807

    PubMed  CAS  Google Scholar 

  • Currie RA, Walker KS, Gray A, Deak M, Casamayor A, Downes CP, Cohen P, Alessi DR, Lucocq J (1999) Role of phosphatidylinositol 3,4,5-trisphosphate in regulating the activity and localization of 3-phosphoinositide-dependent protein kinase-1. Biochem J 337:575–583

    PubMed  CAS  Google Scholar 

  • Das B, Shu XD, Day GJ, Han J, Krishna UM, Falck JR, Broek D (2000) Control of interamolecular interactions between the pleckstrin homology and Db1 homology domains of Vav and Sos1 regulates Rac binding. J Biol Chem 275:15074–15081

    PubMed  CAS  Google Scholar 

  • de Keijzer MN, Emons AMC, Mulder BM (2008) Modeling tip growth: pushing ahead. In: Emons AMC, Ketelaar T (eds) Root hairs: excellent tools for the study of plant molecular cell biology. Springer, Berlin Heidelberg New York

    Google Scholar 

  • den Hartog M, Musgrave A, Munnik T (2001) Nod factor-induced phosphatidic acid and diacylglycerol pyrophosphate formation: a role for phospholipase C and D in root hair deformation. Plant J 25:55–65

    PubMed  CAS  Google Scholar 

  • Di Paolo G, De Camilli P (2006) Phosphoinositides in cell regulation and membrane dynamics. Nature 443:651–675

    PubMed  CAS  Google Scholar 

  • Dowd PE, Coursol S, Skirpan AL, Kao TH, Gilroy S (2006) Petunia phospholipase c1 is involved in pollen tube growth. Plant Cell 18:1438–1453

    PubMed  CAS  Google Scholar 

  • D’Souza-Schorey C, Chavrier P (2006) ARF proteins: roles in membrane traffic and beyond. Nat Rev Mol Cell Biol 7:347–358

    PubMed  Google Scholar 

  • Emons AM, Ketelaar T (2008) Intracellular organization: a prerequisite for root hair elongation and cell wall deposition. In: Emons AMC, Ketelaar T (eds) Root hairs: excellent tools for the study of plant molecular cell biology. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Ercetin ME, Gillaspy GE (2004) Molecular characterization of an Arabidopsis gene encoding a phospholipid-specific inositol polyphosphate 5-phosphatase. Plant Physiol 135:938–946

    PubMed  CAS  Google Scholar 

  • Fang Y, Vilella-Bach M, Bachmann R, Flanigan A, Chen A (2001) Phosphatidic acid-mediated mitogenic activation of mTOR signaling. Science 294:1942–1945

    PubMed  CAS  Google Scholar 

  • Fischer U, Shuzhen M, Grebe M (2004) Lipid function in plant cell polarity. Curr Opin Plant Biol 7:670–676

    PubMed  CAS  Google Scholar 

  • Foreman J, Demidchik V, Bothwell JH, Mylona P, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JD, Davies JM, Dolan L (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422:442–446

    PubMed  CAS  Google Scholar 

  • Fruman DA, Meyers RE, Cantley LC (1998) Phosphoinositide kinases. Annu Rev Biochem 67:481–507

    PubMed  CAS  Google Scholar 

  • Gamper N, Shapiro MS (2007) Target-specific PIP2signaling: How might it work? J Physiol, 10.1113/jphysiol.2007.132787

    Google Scholar 

  • Gamper N, Reznikov V, Yamada Y, Yang J, Shapiro MS (2004) Phophatidylinositol 4,5-bisphosphate signals underlie receptor-specific Gq/11-mediated modulation of N-type Ca2+channels. J Neurosci 24:10980–10992

    PubMed  CAS  Google Scholar 

  • Gardiner JC, Harper JD, Weerakoon ND, Collings DA, Ritchie S, Gilroy S, Cyr RJ, Marc J (2001) A 90-kD phospholipase D from tobacco binds to microtubules and the plasma membrane. Plant Cell 13:2143–2158

    PubMed  CAS  Google Scholar 

  • Gardiner JC, Collings DA, Harper JD, Marc J (2003) The effects of the phospholipase D-antagonist 1-butanol on seedling development and microtubule organization in Arabidopsis. Plant Cell Physiol 44:687–696

    PubMed  CAS  Google Scholar 

  • Gassama-Diagne A, Yu W, ter Beest M, Martin-Belmonte F, Kierbel A, Engel J, Mostov K (2006) Phosphatidylinositol-3,4,5-trisphosphate regulates the formation of the basolateral plasma membrane in epithelial cells. Nat Cell Biol 8:963–970

    PubMed  CAS  Google Scholar 

  • Gilroy S, Jones DL (2000) Through form to function: root hair development and nutrient uptake. Trends Plant Sci 5:56–60

    PubMed  CAS  Google Scholar 

  • Ghosh S, Strum JC, Sciorra VA, Daniel L, Bell RM (1996) Raf-1 kinase possesses distinct binding domains for phosphatidylserine and phosphatidic acid. Phosphatidic acid regulates the translocation of Raf-1 in 12-O-tetradecanoylphorbol-13-acetate-stimulated Madin-Darby canine kidney cells. J Biol Chem 271:8472–8480

    PubMed  CAS  Google Scholar 

  • Grierson C, Schiefelbein J (2008) Genetics of root hair formation. In: Emons AMC, Ketelaar T (eds) Root hairs: excellent tools for the study of plant molecular cell biology. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Grishanin RN, Kowalchyk JA, Klenchin VA, Ann K, Earles CA, Chapman ER, Gerona RR, Martin TF (2004) CAPS acts at a prefusion step in dens-core vesicle exocytosis as a PIP2binding protein. Neuron 43:551–562

    PubMed  CAS  Google Scholar 

  • Hawkins PT, Anderson KE, Davidson K, Stephens LR (2006) Signalling through class I PI3Ks in mammalian cells. Biochem Soc Trans 34:647–662

    PubMed  CAS  Google Scholar 

  • Hemsley PA, Kemp AC, Grierson CS (2005) The tip growth defective1 S-acyl transferase regulates plant cell growth in Arabidopsis. Plant Cell 17:2554–2563

    PubMed  CAS  Google Scholar 

  • Hepler PK, Vidali L, Cheung AY (2001) Polarized cell growth in higher plants. Annu Rev Cell Dev Biol 17:159–187

    PubMed  CAS  Google Scholar 

  • Hilling D, Possart A, Cottier S, Klahre U, Kost B (2006) Pollen tube tip growth depends on plasma membrane polarization mediated by tobacco PLC3 activity and endocytic membrane recycling. Plant Cell 18:3519–3534

    Google Scholar 

  • Ikezawa H (2002) Glycosylphosphatidylinositol (GPI)-anchored proteins. Biol Pharm Bull 25:409–417

    PubMed  CAS  Google Scholar 

  • Im YJ, Perera IY, Brglez I, Davis AJ, Stevenson-Paulik J, Phillippy BQ, Johannes E, Allen NS, Boss WF (2007) Increasing plasma membrane phosphatudylinositol(4,5)Bisphosphate biosynthesis increases phosphoinositide metabolism in. Plant Cell, 10.1105/tpc.107.051367

    Google Scholar 

  • Ishihara H, Shibasaki Y, Kizuki N, Wada T, Yazaki Y, Asano T, Oka Y (1998) Type I phosphatidylinositol-4-phosphate 5-kinase. Cloning of the third isoform and deletion/substitution analysis of members of this novel lipid kinase family. J Biol Chem 273:8741–8748

    PubMed  CAS  Google Scholar 

  • Ito T, Koshiba S, Kigawa T, Kikuchi A, Yokoyama S, Takenawa T (2001) Role of the ENTH domain in phosphatidylinositol-4,5,-bisphosphate binding and endoctosis. Science 291:1047–1051

    Google Scholar 

  • Jenkins GM, Frohman MA (2005) Phospholipase D: a lipid centric review. Cell Mol Life Sci 62:2305–2316

    PubMed  CAS  Google Scholar 

  • Jenkins GH, Fisette PL, Anderson RA (1994) Type I phosphatidylinositol 4-phosphate 5-kinase isoforms are specifically stimulated by phosphatidic acid. J Biol Chem 269:11547–11554

    PubMed  CAS  Google Scholar 

  • Jones MA, Shen JJ, Fu Y, Li H, Yang Z, Grierson CS (2002) The Arabidopsis Rop2 GTPase is a positive regulator of both root hair initiation and tip growth. Plant Cell 14:763–776

    PubMed  CAS  Google Scholar 

  • Kam Y, Exton JH (2001) Phospholipase D activity is required for actin stress fiber formation in fibroblasts. Mol Cell Biol 21:4055–4066

    PubMed  CAS  Google Scholar 

  • Kam JL, Miura K, Jackson TR, Gruschus J, Roller P, Stauffer S, Clark J, Aneja R, Randazzo PA (2000) Phosphoinositide-dependent activation of the ADP-ribosylation factor GTPase-activating protein ASAP1. Evidence for the pleckstrin homology domain functioning as an allosteric site. J Biol Chem 275:9653–9663

    PubMed  CAS  Google Scholar 

  • Kapranov P, Routt SM, Bankaitis VA, de Bruijn FJ, Szczglowski K (2001) Nodule-specific regulation of phosphatidylinositol transfer protein expression in Lotus japonicus. Plant Cell 13:1369–1382

    PubMed  CAS  Google Scholar 

  • Karathanassis D, Stahelin RV, Bravo J, Perisic O, Pacold CM, Cho W, Williams RL (2002) Binding of the PX domain of p47phoxto phosphatidylinositol 3,4-bisphosphate and phosphatidic acid is marked by an intramolecular interaction. EMBO J 21:5057–5068

    PubMed  CAS  Google Scholar 

  • Ketelaar T, Emons AM (2008) The actin cytoskeleton in root hairs: a cell elongation device. In: Emons AMC, Ketelaar T (eds) Root hairs: excellent tools for the study of plant molecular cell biology. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Klarlund JK, Rameh LE, Cantley LC, Buxton JM, Holik JJ, Sakelis C, Patki V, Corvera S, Czech MP (1998) Regulation of GRP1-catalyzed ADP rebosylation factor guanine nucleotide exchange by phosphatidylinositol 3,4,5-trisphosphate. J Bio Chem 273:1859–1862

    CAS  Google Scholar 

  • Kost B, Lemichez E, Spielhofer P, Hong Y, Tolias K, Carpenter C, Chua N-H (1999) Rac homologues and compartmentalized phosphatidylinositol 4,5-bisphosphate act in a common pathway to regulate polar pollen tube growth. J Cell Biol 145:317–330

    PubMed  CAS  Google Scholar 

  • Kozlovsky Y, Chernomordik LV, Kozlov MM (2002) Lipid intermediates in membrane fusion: foration, structure, and decay of hemifusion diaphragm. Biophys J 83:2634–2651

    PubMed  CAS  Google Scholar 

  • Krauss M, Haucke V (2007) Phosphoinositides: Regulators of membrane traffic and protein function. FEBS Lett 581:2105–2111

    PubMed  CAS  Google Scholar 

  • Lai EC (2003) Lipid rafts make for slippery platforms. J Cell Biol 162:365–370

    PubMed  CAS  Google Scholar 

  • Lalanne E, Honys D, Johnson A, Borner GH, Lilley KS, Dugree P, Grossniklaus U, Twell D (2004) SETH1and SETH2, two components of the glycosylphosphatidylinositol anchor biosynthetic pathway, are required for pollen germination and tube growth in Arabidopsis. Plant Cell 16:229–240

    PubMed  CAS  Google Scholar 

  • Lavy M, Bracha-Drori K, Sternberg H, Yalovsky S (2002) A cell-specific, prenylation-independent mechanism regulates targeting of type II RACs. Plant Cell 14:2431–2450

    PubMed  CAS  Google Scholar 

  • Li L, Shin O-H, Rhee J-S, Arac D, Rah J-C, Rizo J, Sudhof T, Rosenmund C (2006a) Phosphatidylinositol phosphates as co-activators of Ca2+binding to C2domains of synaptotagmin 1. J Biol Chem 281:15845–15852

    PubMed  CAS  Google Scholar 

  • Li M, Qin C, Welti R, Wang X (2006b) Double knockouts of phospholipase Dζ1 and Dζ2 in Arabidopsis affect elongation during phosphate-limited growth but do not affect root hair patterning. Plant Physiol 140:761–770

    PubMed  CAS  Google Scholar 

  • Lindsay AJ, McCaffrey MW (2004) The C2 domains of the class I Rab11 family of interacting proteins target recycling vesicles to the plasma membrane. J Cell Sci 117:4365–4375

    PubMed  CAS  Google Scholar 

  • Liscovitch M, Czarny M, Fiucci G, Tang X (2000) Phospholipase D: molecular and cell biology of a novel gene family. Biochem J 345:401–415

    PubMed  CAS  Google Scholar 

  • Logan MR, Mandato CA (2006) Regulation of the actin cytoskeleton by PIP2 in cytokinesis. Biol Cell 98:377–388

    PubMed  CAS  Google Scholar 

  • Macia E, Paris S, Chabre M (2000) Binding of the PH and polybasic C-terminal domains of ARNO to phosphoinositides and to acidic lipids. Biochemistry 39:5893–5901

    PubMed  CAS  Google Scholar 

  • Majerus PW, Kisseleva MV, Norris FA (1999) The role of phosphatases in inositol signaling reactions. J Biol Chem 274:10669–10672

    PubMed  CAS  Google Scholar 

  • Manifava M, Thuring JW, Lim ZY, Packman L, Holmes AB, Ktistakis NT (2001) Differential binding of traffic-related proteins to phosphatidic acid- or phosphatidylinositol (4,5)-bisphosphate-coupled affinity reagents. J Biol Chem 276:8987–8994

    CAS  Google Scholar 

  • Martin TF (1998) Phosphoinositide lipids as signaling molecules: common themes for signal transduction, cytoskeletal regulation, and membrane trafficking. Annu Rev Cell Dev Biol 14:231–264

    PubMed  CAS  Google Scholar 

  • Martin-Belmonte F, Gassama-Diagne A, Datta A, Yu W, Rescher U, Gerke V, Mostov K (2006) PTEN-mediated apical segregation of phosphoinositides controls epithelial morphogenesis through Cdc42. Cell 128:383–397

    Google Scholar 

  • Meijer HJG, Munnik T (2003) Phospholipid-based signaling in plants. Annu Rev Plant Biol 54:265–306

    PubMed  CAS  Google Scholar 

  • Mertens AE, Roovers RC, Collard JG (2003) Regulation of Tiam-Rac signaling. FEBS Lett 546:11–16

    PubMed  CAS  Google Scholar 

  • Molendijk AJ, Bischoff F, Rajendrakumar CS, Friml J, Braun M, Gilroy S, Palme K (2001) Arabidopsis thalianaRop GTPases are localized to tips of root hairs and control polar growth. EMBO J. 20:2799–2788

    Google Scholar 

  • Monteiro D, Liu Q, Lisboa S, Sherer GE, Quader H, Malho R (2005) Phosphoinositides and phosphatidic acid regulate pollen tube growth and reorientation through modulation of [Ca2+]cand membrane secretion. J. Exp. Bot. 56:1665–1674

    PubMed  CAS  Google Scholar 

  • Moritz A, De Graan PN, Gispen WH, Wirtz KW (1992) Phosphatidic acid is a specific activator of phosphatidylinositol-4-phosphate kinase. J. Biol. Chem. 267:7207–7210

    PubMed  CAS  Google Scholar 

  • Mueller-Roeber B, Pical C (2002) Inositol phospholipid metabolism in Arabidopsis. Characterized and putative isoforms of inositol phospholipid kinase and phosphoinositide-specific phospholipase C. Plant Physiol 130:22–46

    PubMed  CAS  Google Scholar 

  • Munnik T (2001) Phosphatidic acid: an emerging plant lipid second messenger. Trends Plant Sci 6:227–233

    PubMed  CAS  Google Scholar 

  • Nakanishi H, de los Santos P, Neiman AM (2004) Positive and negative regulation of a SNARE protein by control of intracellular localization. Mol Biol Cell 15:1802–1815

    PubMed  CAS  Google Scholar 

  • Nie Z, Stanley KT, Stauffer S, Jacques KM, Hirsch DS, Takei J, Randazzo PA (2002) AGAP1, an endosome-associated, phosphoinositide-dependent ADP-ribosylation factor GTPase-activating protein that affects actin cytoskeleton. J Biol Chem 277:48965–48975

    PubMed  CAS  Google Scholar 

  • Nielsen E (2008) Plant cell wall biogenesis during tip growth in root hair cells. In: Emons AMC, Ketelaar T (eds) Root hairs:excellent tools for the study of plant molecular cell biology. , Springer, Berlin Heidelberg New York

    Google Scholar 

  • Niggli V (2005) Regulation of protein activities by phosphoinositide phosphates. Annu Rev Cell Biol 21:57–79

    CAS  Google Scholar 

  • Oliver D, Lien CC, Soom M, Baukrowitz T, Jonas P, Fakler B (2004) Functional conversion between A-type and deleyed rectifier K+channels by membrane lipids. Science 304:265–270

    PubMed  CAS  Google Scholar 

  • Olsen HL, Hoy M, Zhang W, Bertorello AM, Bokvist K, Capito K, Efanov AM, Meister B, Thams P, Yang SN, Rorsman P, Berggren PO, Gromada J (2003) Phosphatidylinositol 4-kinase serves as a metabolic sensor and regulates priming of secretory granules in pancreatic beta cells. Proc Natl Acad Sci USA 100:5187–5192

    PubMed  CAS  Google Scholar 

  • Ohashi Y, Oka A, Rodrigues-Pousada R, Possenti M, Ruberti I, Morelli G, Aoyama T (2003) Modulation of phospholipid signaling by GLABRA2 in root-hair pattern formation. Science 300:1427–1430

    PubMed  CAS  Google Scholar 

  • Oude Weernink PA, Schmidt M, Jakobs KH (2004) Regulation and cellular roles of phosphoinositide 5-kinases. Eur J Pharmacol 500:87–99

    PubMed  CAS  Google Scholar 

  • Oude Weernink PA, Lopez de Jesus M, Schmidt M (2007) Phospholipase D signaling: orchestration by PIP2and small GTPases. Naunyn Schmiedeberg’s Arch Pharmacol 374:399–411

    CAS  Google Scholar 

  • Oyama T, Shimura Y, Okada K (2002) The IREgene encodes a protein kinase homologue and modulates root hair growth in Arabidopsis. Plant J 30:289–299

    PubMed  CAS  Google Scholar 

  • Palicz A, Foubert TR, Jesaitis AJ, Marodi L, McPhail LC (2001) Phosphatidic acid and diacylglycerol directly activate NADPH oxidase by interacting with enzyme components. J Biol Chem 276:3090–3097

    PubMed  CAS  Google Scholar 

  • Pao AC, McCormick JA, Li H, Siu J, Govaerts C, Bhalla V, Soundararajan R, Pearce D (2007) NH2terminus of serum and glucocorticoid-regulated kinase 1 binds to phosphoinositides and is essential for isoform-specific physiological functions. Am J Physiol Renal Physiol 292:F1741–F1750

    PubMed  CAS  Google Scholar 

  • Paris S, Beraud-Dufour S, Robineau S, Bigay J, Antonny B, Chabre M, Chardin P (1997) Role of protein-phospholipid interactions in the activation of ARF1 by the guanine nucleotide exchange factor Arno. J Bio Chem 272:22221–22226

    CAS  Google Scholar 

  • Park J, Gu Y, Lee Y, Yang Z, Lee Y (2004) Phosphatidic acid induces leaf cell death in Arabidopsis by activating the Rho-related small G protein GTPase-madiated pathway of reactive oxygenspecies generation. Plant Physiol 134:129–136

    PubMed  CAS  Google Scholar 

  • Peterson RL, Farquhar ML (1996) Root hairs: specialized tubular cells extending root surfaces. Bot Rev 62:2–33

    Google Scholar 

  • Potocky M, Elias M, Profotova B, Novotna Z, Valentova O, Zarsky V (2003) Phosphatidic acid produced by phospholipase D is required for tobacco pollen tube growth. Planta 217:122–130

    PubMed  CAS  Google Scholar 

  • Preuss ML, Schmitz AJ, Thole JM, Bonner HKS, Otegui MS, Nielsen E (2006) A role for the RabA4b effector protein PI-4Kβ1 in polarized expansion of root hair cells in Arabidopsis thaliana. J Cell Biol 172:991–998

    PubMed  CAS  Google Scholar 

  • Qin C, Wang X (2002) The Arabidopsis phospholipase D family. Characterization of a calcium-independent and phosphatidylcholine-selective PLDζ1 with distinct regulatory domains. Plant Physiol 128:1057–1068

    PubMed  CAS  Google Scholar 

  • Qiu JL, Jilk R, Marks MD, Szymanski DB (2002) The Arabidopsis SPIKE1gene is required for normal cell shape control and tissue development. Plant Cell 14:101–118

    PubMed  CAS  Google Scholar 

  • Rameh LE, Cantley LC (1999) The role of phosphoinositide 3-kinase lipid products in cell function. J Biol Chem 274:8347–8350

    PubMed  CAS  Google Scholar 

  • Rentel MC, Lecourieux D, Ouaked F, Usher SL, Petersen L, Okamoto H, Knight H, Peck SC, Grierson CS, Hirt H, Knight MR (2004) OXI1 kinase is necessary for oxidative burst-mediated signaling in Arabidopsis. Nature 427:858–861

    PubMed  CAS  Google Scholar 

  • Ridley AJ (2006) Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking. Trends Cell Biol 16:522–529

    PubMed  CAS  Google Scholar 

  • Rizzo MA, Shome K, Vasudevan C, Stolz DB, Sung TC, Frohman MA, Watkins SC, Romero G (1999) Phospholipase D and its product, phosphatidic acid, mediate agonist-dependent raf-1 translocation to the plasma mmembrane and the activation of the mitogen-activated protein kinase pathway. J Biol Chem 274:1131–1139

    PubMed  CAS  Google Scholar 

  • Runnels LW, Yue L, Clapham DE (2002) The TRPM7 channel is inactivated by PIP2hydrolysis. NatCell Biol 4:329–336

    CAS  Google Scholar 

  • Russo C, Gao Y, Mancini P, Vanni C, Porotto M, Falasca M, Torrisi MR, Zheng Y, Eva A (2001) Modulation of oncogenic DBL activity by phosphoinositol phosphate binding to pleckstrin homology domain. J Biol Chem 276:19524–19531

    PubMed  CAS  Google Scholar 

  • Ryan E, Steer M, Dolan L (2001) Cell biology and genetics of root hair formation in Arabidopsis thaliana. Protoplasma 215:140–149

    PubMed  CAS  Google Scholar 

  • Sang Y, Cui D, Wang X (2001) Phospholipase D and Phosphatidic acid-mediated generation of superoxide in Arabidopsis. Plant Physiol 126:1449–1458

    PubMed  CAS  Google Scholar 

  • Santarius M, Lee CH, Anderson RA (2006) Supervised membrane swimming: small G-protein lifeguards regulate PIPK signalling and monitor intracellular PtdIns(4,5)P 2pools. Biochem J 398:1–13

    PubMed  CAS  Google Scholar 

  • Scales SJ, Scheller RH (1999) Cell biology-lipid membranes shape up. Nature 401:123–124

    PubMed  CAS  Google Scholar 

  • Smith LG, Oppenheimer DG (2005) Spatial control of cell expansion by the plant cytoskeleton. Annu Rev Cell Dev Biol 21:271–295

    PubMed  CAS  Google Scholar 

  • Stephens LR, Anderson K, Stokoe D, Erdjument-Bromage H, Painter GF, Holmes AB, Gaffney PR, Reese CB, McCormick F, Tempst P, Coadwell J, Hawkins PT (1998) Protein kinase B kinases that mediate phosphatidylinositol 3,4,5-trisphosphate-dependent activation of protein kinase B. Science 279:710–714

    PubMed  CAS  Google Scholar 

  • Stokoe D, Stephens LR, Copeland T, Gaffney PR, Reese CB, Painter GF, Holmes AB, McCormick F, Hawkins PT (1997) Dual role of phosphatidylinositol-3,4,5-trisphosphate in the activation of protein kinase B. Science 277:567–570

    PubMed  CAS  Google Scholar 

  • Suh BC, Hille B (2005) Regulation of ion channels by phosphatidylinositol 4,5-bisphosphate. Curr Opin Neurobiol 15:370–378

    PubMed  CAS  Google Scholar 

  • Takenawa T, Itoh T (2001) Phosphoinositides, key molecules for regulation of actin cytoskeletal organization and membrane traffic form the plasma membrane. Biochim Biophys Acta 1533:190–206

    PubMed  CAS  Google Scholar 

  • Testerink C, Munnik T (2005) Phosphatidic acid: a multifunctional stress signaling lipid in plants. Trends Plant Sci 10:368–375

    PubMed  CAS  Google Scholar 

  • Topham MK (2006) Signaling roles of diacylglycerol kinases. J Cell Biochem 97:474–484

    PubMed  CAS  Google Scholar 

  • van Leeuwen W, Okresz L, Bogre L, Munnik T (2004) Learning the lipid language of plant signaling. Trends Plant Sci 19:378–384

    Google Scholar 

  • Vincent P, Chua M, Nogue F, Fairbrother A, Mekeel H, Xu Y, Allen N, Bibikova TN, Gilroy S, Bankaitis VA (2005) A Sec 14p-nodulin domain phosphatidylinositol transfer protein polarizes membrane growth of Arabidopsis thalianaroot hairs. J Cell Biol 168:801–812

    PubMed  CAS  Google Scholar 

  • Wang X (2005) Regulatory functions of phospholipase D and phosphatidic acid in plant growth, development, and stress responses. Plant Physiol 139:566–573

    PubMed  CAS  Google Scholar 

  • Wang X, Devaiah SP, Zhang W, Welti R (2006) Signaling functions of phosphatidic acid. Prog Lipid Res 45:250–278

    PubMed  CAS  Google Scholar 

  • Wu L, Bauer CS, Zhen XG, Xie C, Yang J (2002) Dual regulation of voltage-gated calcium channels by PtdIns(4,5)P2. Nature 419:947–952

    PubMed  CAS  Google Scholar 

  • Yamaguchi T, Tanabe S, Minami E, Shibuya N (2004) Activation of phospholipase D induced by hydrogen peroxide in suspension-cultured rice cells. Plant Cell Physiol 45:1261–1270

    PubMed  CAS  Google Scholar 

  • Yin HL, Janmey PA (2003) Phosphoinositide regulation of the actin cytoskeleton. Annu Rev Physiol 65:761–789

    PubMed  CAS  Google Scholar 

  • Zarsky V, Fowler J (2008) ROP (Rho-related protein from Plants) GTPases for spatial control of root hair morphogenesis. In: Emons AMC, Ketelaar T (eds) Root hairs: excellent tools for the study of plant molecular cell biology. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Zonia L, Munnik T (2006) Cracking the green paradigm: functional coding of phosphoinositide signals in plant stress responses. Subcell Biochem 39:207–237

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Aoyama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Aoyama, T. (2009). Phospholipid Signaling in Root Hair Development. In: Emons, A.M.C., Ketelaar, T. (eds) Root Hairs. Plant Cell Monographs, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79405-9_1

Download citation

Publish with us

Policies and ethics