Skip to main content

Part of the book series: Topics in Applied Physics ((TAP,volume 115))

Abstract

The manipulation and quantification of the effects produced by an rf field in a mesoscopic structure are fundamental issues in view of developing single-spin-based qubits. Here, we review the experiments on electron transport in quantum dots under microwave irradiation. The electromagnetic vector potential provides excitation of electrons in the leads and in the quantum dot, and an electromotive potential at the leads. The combinations of the two effects go under the name of photon-assisted tunneling. In the present review, the theory of photon-assisted tunneling, based on the Tien–Gordon model applied to the Coulomb-blockade regime of a quantum dot is outlined. An expression for the dc current flowing through the dot in response to a microwave signal is calculated. Then, a classification of different experiments, organized following the different processes adopted to create the dot is presented. Measurements of GaAs split-gate-defined single and double quantum dots as well as lithographically defined SET based on Si/SiGe technology are considered. Finally, recent experiments on a Si/SiO2 commercial flash memory microwave irradiated up to 40 GHz are illustrated, without and with a static magnetic field up to 12 T.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B.E. Kane, Nature 393, 133 (1998)

    Article  ADS  Google Scholar 

  2. D. Loss, D.P. DiVincenzo, Phys. Rev. A 57, 120 (1998)

    Article  ADS  Google Scholar 

  3. R. Vrijen, E. Yablonovitch, K. Wang, H.W. Jiang, A. Balandin, V. Roychowdhury, T. Mor, D. DiVincenzo, Phys. Rev. A 62, 12306 (2000)

    Article  ADS  Google Scholar 

  4. M. Friesen, P. Rugheimer, D. Savage, M.G. Lagally, D.W. van der Weide, R. Joynt, M. Eriksson, Phys. Rev. B 67, 121301 (2003)

    Article  ADS  Google Scholar 

  5. R. Hanson et al., Rev. Mod. Phys. 79, 1217 (2007)

    Article  ADS  Google Scholar 

  6. C.W.J. Beenakker, Phys. Rev. B 44, 1646 (1991)

    Article  ADS  Google Scholar 

  7. F.H.L. Koppens et al., Nature 442, 766 (2006)

    Article  ADS  Google Scholar 

  8. M. Fanciulli, E. Prati, G. Ferrari, M. Sampietro, AIP Conf. Proc. 800(1), 125–130 (2005)

    Article  ADS  Google Scholar 

  9. R.G. Mani, V. Narayanamurti, K. von Klitzing, J.H. Smet, W.B. Johnson, V. Umansky, Phys. Rev. B 69, 161306(R) (2004)

    ADS  Google Scholar 

  10. S.A. Studenikin, M. Potemski, A. Sachrajda, M. Hilke, L.N. Pfeiffer, K.W. West, Phys. Rev. B 71, 245313 (2005)

    Article  ADS  Google Scholar 

  11. G. Ferrari, L. Fumagalli, M. Sampietro, E. Prati, M. Fanciulli, J. Appl. Phys. 98, 044505 (2005)

    Article  ADS  Google Scholar 

  12. E. Prati, M. Fanciulli, A. Calderoni, G. Ferrari, M. Sampietro, Phys. Lett. A 370, 491–493 (2007)

    Article  ADS  Google Scholar 

  13. E. Prati, M. Fanciulli, A. Calderoni, G. Ferrari, M. Sampietro, J. Appl. Phys. 103, 104503 (2008)

    Article  ADS  Google Scholar 

  14. L.P. Kouwenhoven et al., Phys. Rev. B 50, 2019 (1994)

    Article  ADS  Google Scholar 

  15. L.P. Kouwenhoven et al., Phys. Rev. Lett. 73, 3443 (1994)

    Article  ADS  Google Scholar 

  16. T. Fujisawa, S. Tarucha, Superlattices Microstruct. 21, 247 (1997)

    Article  ADS  Google Scholar 

  17. Obata et al., Rev. Sci. Instrum. 78, 104704 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  18. T.H. Oosterkamp et al., Nature 395, 873 (1998)

    Article  ADS  Google Scholar 

  19. R.H. Blick, R.J. Haug, D.W. van der Weide, K. von Klitzing, K. Eberl, Appl. Phys. Lett. 67, 3924-6 (1995)

    Article  ADS  Google Scholar 

  20. D. Dovinos, D. Williams, Phys. Rev. B 57, 085313 (2005)

    Article  ADS  Google Scholar 

  21. A.H. Dayem, R.J. Martin, Phys. Rev. Lett. 8, 246 (1962)

    Article  ADS  Google Scholar 

  22. P.K. Tien, J.R. Gordon, Phys. Rev. 129, 647 (1963)

    Article  ADS  Google Scholar 

  23. C. Bruder, H. Scholler, Phys. Rev. Lett. 72, 1076 (1994)

    Article  ADS  Google Scholar 

  24. T.H. Oosterkamp et al., Phys. Rev. Lett. 78, 1536 (1997)

    Article  ADS  Google Scholar 

  25. Van Der Wiel et al., Physica B 272, 31–35 (1999)

    Article  ADS  Google Scholar 

  26. H. Sellier, G.P. Lansbergen, J. Caro, S. Rogge, N. Collaert, I. Ferain, M. Jurczak, S. Biesemans, Phys. Rev. Lett. 97, 206805 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Prati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Prati, E., Latempa, R., Fanciulli, M. (2009). Photon-Assisted Tunneling in Quantum Dots. In: Fanciulli, M. (eds) Electron Spin Resonance and Related Phenomena in Low-Dimensional Structures. Topics in Applied Physics, vol 115. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79365-6_12

Download citation

Publish with us

Policies and ethics