Advertisement

  • The epidermis has a powerful innate immune system.

  • Keratinocytes are immunologically active cells, able to identify and kill invading microbes.

  • Keratinocytes recognize highly conserved structures of the pathogens, called pathogenassociated molecular patterns (PAMPs), via pattern recognition receptors (PRRs), which results in the secretion of antimicrobial and proinflammatory mediators.

  • Antimicrobial peptides and proinflammatory chemokines/cytokines, effector molecules of innate immunity, also act as regulators of acquired immune responses, inflammation and wound repair.

  • Keratinocyte-derived effector molecules are critical in the recruitment of dendritic cells, T cells and neutrophils into sites of infection, linking innate and acquired immune responses in the skin.

Keywords

Antimicrobial Peptide Propionibacterium Acne Human Beta Muramyl Dipeptide Acquire Immune Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barker JN, Jones ML, Mitra RS, Crockett-Torabe E, Fantone JC, Kunkel SL, Warren JS, Dixit VM and Nickoloff BJ (1991) Modulation of keratinocyte-derived interleukin-8 which is chemotactic for neutrophils and T lymphocytes. Am J Pathol 139:869–876PubMedGoogle Scholar
  2. 2.
    Barker JN, Mitra RS, Griffiths CE, Dixit VM, Nickoloff BJ (1991) Keratinocytes as initiators of inflammation. Lancet 337:211–214PubMedCrossRefGoogle Scholar
  3. 3.
    Janeway CA, Jr., Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20:197–216PubMedCrossRefGoogle Scholar
  4. 4.
    Pivarcsi A, Nagy I, Kemeny L (2005) Innate immunity in the skin: how keratinocytes fight against pathogens. Curr Immunol Rev 1:29–42CrossRefGoogle Scholar
  5. 5.
    Baker BS, Ovigne JM, Powles AV, Corcoran S Fry L (2003) Normal keratinocytes express Toll-like receptors (TLRs) 1, 2 and 5: modulation of TLR expression in chronic plaque psoriasis. Br J Dermatol. 148:670–679PubMedCrossRefGoogle Scholar
  6. 6.
    Lebre MC, van der Aar AM, van Baarsen L, van Capel TM, Schuitemaker JH, Kapsenberg ML, de Jong EC (2007) Human keratinocytes express functional Toll-like receptor 3, 4, 5, and 9. J Invest Dermatol 127:331–341PubMedCrossRefGoogle Scholar
  7. 7.
    Kawai K, Shimura H, Minagawa M, Ito A, Tomiyama K, Ito M (2002) Expression of functional Toll-like receptor 2 on human epidermal keratinocytes. J Dermatol Sci 30:185–194PubMedCrossRefGoogle Scholar
  8. 8.
    Mempel M, Voelcker V, Kollisch G, Plank C, Rad R, Gerhard M, Schnopp C, Fraunberger P, Walli AK, Ring J, Abeck D, Ollert M (2003) Toll-like receptor expression in human keratinocytes: nuclear factor kappaB controlled gene activation by Staphylococcus aureus is toll-like receptor 2 but not tolllike receptor 4 or platelet activating factor receptor dependent. J Invest Dermatol 121:1389–1396PubMedCrossRefGoogle Scholar
  9. 9.
    Pivarcsi A, Bodai L, Rethi B, Kenderessy-Szabo A, Koreck A, Szell M, Beer Z, Bata-Csorgoo Z, Magocsi M, Rajnavolgyi E, Dobozy A, Kemeny L (2003) Expression and function of Toll-like receptors 2 and 4 in human keratinocytes. Int Immunol 15:721–730PubMedCrossRefGoogle Scholar
  10. 10.
    Song PI, Park YM, Abraham T, Harten B, Zivony A, Neparidze N, Armstrong CA, Ansel JC (2002) Human kera-tinocytes express functional CD14 and toll-like receptor 4. J Invest Dermatol 119:424–432PubMedCrossRefGoogle Scholar
  11. 11.
    Voss E, Wehkamp J, Wehkamp K, Stange EF, Schroder JM, Harder J (2006) NOD2/CARD15 mediates induction of the antimicrobial peptide human beta-defensin-2. J Biol Chem 281:2005–2011PubMedCrossRefGoogle Scholar
  12. 12.
    Sugita K, Kabashima K, Atarashi K, Shimauchi T, Kobayashi M, Tokura Y (2007) Innate immunity mediated by epidermal keratinocytes promotes acquired immunity involving Langerhans cells and T cells in the skin. Clin Exp Immunol 147:176–183PubMedGoogle Scholar
  13. 13.
    Sugawara I, Yamada H, Li C, Mizuno S, Takeuchi O, Akira S (2003) Mycobacterial infection in TLR2 and TLR6 knockout mice. Microbiol Immunol 47:327–336PubMedGoogle Scholar
  14. 14.
    Wyllie DH, Kiss-Toth E, Visintin A, Smith SC, Boussouf S, Segal DM, Duff GW, Dower SK (2000) Evidence for an accessory protein function for Toll-like receptor 1 in antibacterial responses. J Immunol 165:7125–7132PubMedGoogle Scholar
  15. 15.
    Wedi B, Kapp A (2002) Helicobacter pylori infection in skin diseases: a critical appraisal. Am J Clin Dermatol 3: 273–282PubMedCrossRefGoogle Scholar
  16. 16.
    Pivarcsi A, Koreck A, Bodai L, Szell M, Szeg C, Belso N, Kenderessy-Szabo A, Bata-Csorgo Z, Dobozy A, Kemeny L (2004) Differentiation-regulated expression of Toll-like receptors 2 and 4 in HaCaT keratinocytes. Arch Dermatol Res 296:120–124PubMedCrossRefGoogle Scholar
  17. 17.
    Shimazu R, Akashi S, Ogata H, Nagai Y, Fukudome K, Miyake K, Kimoto M (1999) MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J Exp Med, 189:1777–1782PubMedCrossRefGoogle Scholar
  18. 18.
    Marzano AV, Mercogliano M, Borghi A, Facchetti M, Caputo R (2003) Cutaneous infection caused by Salmonella typhi. J Eur Acad Dermatol Venereol 17:575–577PubMedCrossRefGoogle Scholar
  19. 19.
    Ebnet K, Brown KD, Siebenlist UK, Simon MM, Shaw S (1997) Borrelia burgdorferi activates nuclear factor-kappa B and is a potent inducer of chemokine and adhesion molecule gene expression in endothelial cells and fibroblasts. J Immunol 158:3285–3292PubMedGoogle Scholar
  20. 20.
    Liu L, Zhou X, Shi J, Xie X, Yuan Z (2003) Toll-like recep-tor-9 induced by physical trauma mediates release of cytok-ines following exposure to CpG motif in mouse skin. Immunology 110:341–347PubMedCrossRefGoogle Scholar
  21. 21.
    Curry JL, Qin JZ, Bonish B, Carrick R, Bacon P, Panella J, Robinson J, Nickoloff BJ (2003) Innate immune-related receptors in normal and psoriatic skin. Arch Pathol Lab Med 127:178–186PubMedGoogle Scholar
  22. 22.
    Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4:499–511PubMedCrossRefGoogle Scholar
  23. 23.
    Murphy JE, Robert C, Kupper TS (2000) Interleukin-1 and cutaneous inflammation: a crucial link between innate and acquired immunity. J Invest Dermatol 114:602–608PubMedCrossRefGoogle Scholar
  24. 24.
    Zhang G, Ghosh S (2001) Toll-like receptor-mediated NF-kappaB activation: a phylogenetically conserved paradigm in innate immunity. J Clin Invest 107:13–19PubMedCrossRefGoogle Scholar
  25. 25.
    Mercurio F, Manning AM (1999) Multiple signals converging on NF-kappaB. Curr Opin Cell Biol 11:226–232PubMedCrossRefGoogle Scholar
  26. 26.
    Takeda K, Akira S (2004) TLR signaling pathways. Semin Immunol 16:3–9PubMedCrossRefGoogle Scholar
  27. 27.
    Miller LS, Modlin RL (2007) Human keratinocyte Toll-like receptors promote distinct immune responses. J Invest Dermatol 127:262–263PubMedCrossRefGoogle Scholar
  28. 28.
    Kaparakis M, Philpott DJ, Ferrero RL (2007) Mammalian NLR proteins; discriminating foe from friend. Immunol Cell Biol 85:495–502PubMedCrossRefGoogle Scholar
  29. 29.
    Athman R, Philpott D (2004) Innate immunity via Toll-like receptors and Nod proteins. Curr Opin Microbiol 7:25–32PubMedCrossRefGoogle Scholar
  30. 30.
    Girardin SE, Boneca IG, Viala J, Chamaillard M, Labigne A, Thomas G, Philpott DJ, Sansonetti PJ (2003) Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J Biol Chem 278: 8869–8872PubMedCrossRefGoogle Scholar
  31. 31.
    Gallo RL, Huttner KM (1998) Antimicrobial peptides: an emerging concept in cutaneous biology. J Invest Dermatol 111:739–743PubMedCrossRefGoogle Scholar
  32. 32.
    Nizet V, Ohtake T, Lauth X, Trowbridge J, Rudisill J, Dorschner RA, Pestonjamasp V, Piraino J, Huttner K, Gallo RL (2001) Innate antimicrobial peptide protects the skin from invasive bacterial infection. Nature 414:454–457PubMedCrossRefGoogle Scholar
  33. 33.
    Frohm M, Agerberth B, Ahangari G, Stahle-Backdahl M, Liden S, Wigzell H, Gudmundsson GH (1997) The expression of the gene coding for the antibacterial peptide LL-37 is induced in human keratinocytes during inflammatory disorders. J Biol Chem 272:15258–15263PubMedCrossRefGoogle Scholar
  34. 34.
    Harder J, Bartels J, Christophers E, Schroder JM (1997) A peptide antibiotic from human skin. Nature 387:861PubMedCrossRefGoogle Scholar
  35. 35.
    Liu AY, Destoumieux D, Wong AV, Park CH, Valore EV, Liu L, Ganz T (2002) Human beta-defensin-2 production in keratinocytes is regulated by interleukin-1, bacteria, and the state of differentiation. J Invest Dermatol 118:275–281PubMedCrossRefGoogle Scholar
  36. 36.
    Heilborn JD, Nilsson MF, Kratz G, Weber G, Sorensen O, Borregaard N, Stahle-Backdahl M (2003) The cathelicidin anti-microbial peptide LL-37 is involved in re-epithelialization of human skin wounds and is lacking in chronic ulcer epithelium. J Invest Dermatol 120:379–389PubMedCrossRefGoogle Scholar
  37. 37.
    Schroder JM, Harder J (1999) Human beta-defensin-2. Int J Biochem Cell Biol 31:645–651PubMedCrossRefGoogle Scholar
  38. 38.
    Harder J, Meyer-Hoffert U, Wehkamp K, Schwichtenberg L, Schroder JM (2004) Differential gene induction of human beta-defensins (hBD-1, -2, -3, and -4) in keratinocytes is inhibited by retinoic acid. J Invest Dermatol 123:522–529PubMedCrossRefGoogle Scholar
  39. 39.
    Ali RS, Falconer A, Ikram M, Bissett CE, Cerio R, Quinn AG (2001) Expression of the peptide antibiotics human beta defensin-1 and human beta defensin-2 in normal human skin. J Invest Dermatol 117:106–111PubMedCrossRefGoogle Scholar
  40. 40.
    Fulton C, Anderson GM, Zasloff M, Bull R, Quinn AG (1997) Expression of natural peptide antibiotics in human skin. Lancet 350:1750–1751PubMedCrossRefGoogle Scholar
  41. 41.
    Oren A, Ganz T, Liu L, Meerloo T (2003) In human epidermis, beta-defensin 2 is packaged in lamellar bodies. Exp Mol Pathol 74:180–182PubMedCrossRefGoogle Scholar
  42. 42.
    Chadebech P, Goidin D, Jacquet C, Viac J, Schmitt D, Staquet MJ (2003) Use of human reconstructed epidermis to analyze the regulation of beta-defensin hBD-1, hBD-2, and hBD-3 expression in response to LPS. Cell Biol Toxicol 19:313–324PubMedCrossRefGoogle Scholar
  43. 43.
    Chung WO, Dale BA (2004) Innate immune response of oral and foreskin keratinocytes: utilization of different signaling pathways by various bacterial species. Infect Immun 72:352–358PubMedCrossRefGoogle Scholar
  44. 44.
    Dinulos JG, Mentele L, Fredericks LP, Dale BA, Darmstadt GL (2003) Keratinocyte expression of human beta defensin 2 following bacterial infection: role in cutaneous host defense. Clin Diagn Lab Immunol 10:161–166PubMedCrossRefGoogle Scholar
  45. 45.
    Nagy I, Pivarcsi A, Koreck A, Szell M, Urban E, Kemeny L (2005) Distinct strains of Propionibacterium acnes induce selective human beta-defensin-2 and interleukin-8 expression in human keratinocytes through toll-like receptors. J Invest Dermatol 124:931–938PubMedCrossRefGoogle Scholar
  46. 46.
    Kopp E, Medzhitov R (2002) Skin antibiotics get in the loop. Nat Med 8:1359–1360PubMedCrossRefGoogle Scholar
  47. 47.
    Harder J, Bartels J, Christophers E, Schroder JM (2001) Isolation and characterization of human beta -defensin-3, a novel human inducible peptide antibiotic. J Biol Chem 276:5707–5713PubMedCrossRefGoogle Scholar
  48. 48.
    Murakami M, Ohtake T, Dorschner RA, Schittek B, Garbe C, Gallo RL (2002) Cathelicidin anti-microbial peptide expression in sweat, an innate defense system for the skin. J Invest Dermatol 119:1090–1095PubMedCrossRefGoogle Scholar
  49. 49.
    Niyonsaba F, Iwabuchi K, Someya A, Hirata M, Matsuda H, Ogawa H, Nagaoka I (2002) A cathelicidin family of human antibacterial peptide LL-37 induces mast cell chemotaxis. Immunology 106:20–26PubMedCrossRefGoogle Scholar
  50. 50.
    Dorschner RA, Pestonjamasp VK, Tamakuwala S, Ohtake T, Rudisill J, Nizet V, Agerberth B, Gudmundsson GH, Gallo RL (2001) Cutaneous injury induces the release of cathelici-din anti-microbial peptides active against group A Streptococcus. J Invest Dermatol 117:91–97PubMedCrossRefGoogle Scholar
  51. 51.
    Harder J, Schroder JM (2002) RNase 7, a novel innate immune defense antimicrobial protein of healthy human skin. J Biol Chem 277:46779–46784PubMedCrossRefGoogle Scholar
  52. 52.
    Wiedow O, Harder J, Bartels J, Streit V, Christophers E (1998) Antileukoprotease in human skin: an antibiotic peptide constitutively produced by keratinocytes. Biochem Biophys Res Commun 248:904–909PubMedCrossRefGoogle Scholar
  53. 53.
    Lu X, Wang M, Qi J, Wang H, Li X, Gupta D, Dziarski R (2006) Peptidoglycan recognition proteins are a new class of human bactericidal proteins. J Biol Chem 281:5895–5907PubMedCrossRefGoogle Scholar
  54. 54.
    Wang H, Gupta D, Li X, Dziarski R (2005) Peptidoglycan recognition protein 2 (N-acetylmuramoyl-L-Ala amidase) is induced in keratinocytes by bacteria through the p38 kinase pathway. Infect Immun 73:7216–7225PubMedCrossRefGoogle Scholar
  55. 55.
    Homey B, Bunemann E (2004) Chemokines and inflammatory skin diseases. Ernst Schering Res Found Workshop 45:69–83PubMedGoogle Scholar
  56. 56.
    Homey B, Alenius H, Muller A, Soto H, Bowman EP, Yuan W, McEvoy L, Lauerma AI, Assmann T, Bunemann E, Lehto M, Wolff H, Yen D, Marxhausen H, To W, Sedgwick J, Ruzicka T, Lehmann P, Zlotnik A (2002) CCL27-CCR10 interactions regulate T cell-mediated skin inflammation. Nat Med 8:157–165PubMedCrossRefGoogle Scholar
  57. 57.
    Gillitzer R, Goebeler M (2001) Chemokines in cutaneous wound healing. J Leukoc Biol 69:513–521PubMedGoogle Scholar
  58. 58.
    Matsubara M, Harada D, Manabe H, Hasegawa K (2004) Staphylococcus aureus peptidoglycan stimulates granulocyte macrophage colony-stimulating factor production from human epidermal keratinocytes via mitogen-activated protein kinases. FEBS Lett 566:195–200PubMedCrossRefGoogle Scholar
  59. 59.
    Wooten RM, Ma Y, Yoder RA, Brown JP, Weis JH, Zachary JF, Kirschning CJ, Weis JJ (2002) Toll-like receptor 2 is required for innate, but not acquired, host defense to Borrelia burgdorferi. J Immunol 168:348–355PubMedGoogle Scholar
  60. 60.
    Giustizieri ML, Mascia F, Frezzolini A, De Pita O, Chinni LM, Giannetti A, Girolomoni G, Pastore S (2001) Keratinocytes from patients with atopic dermatitis and psoriasis show a distinct chemokine production profile in response to T cell-derived cytokines. J Allergy Clin Immunol 107:871–877PubMedCrossRefGoogle Scholar
  61. 61.
    Yang D, Biragyn A, Kwak LW, Oppenheim JJ (2002) Mammalian defensins in immunity: more than just microbi-cidal. Trends Immunol 23:291–296PubMedCrossRefGoogle Scholar
  62. 62.
    Yang D, Chen Q, Hoover DM, Staley P, Tucker KD, Lubkowski J, Oppenheim JJ (2003) Many chemokines including CCL20/MIP-3alpha display antimicrobial activity. J Leukoc Biol 74:448–455PubMedCrossRefGoogle Scholar
  63. 63.
    Hieshima K, Ohtani H, Shibano M, Izawa D, Nakayama T, Kawasaki Y, Shiba F, Shiota M, Katou F, Saito T, Yoshie O (2003) CCL28 has dual roles in mucosal immunity as a chemokine with broad-spectrum antimicrobial activity. J Immunol 170:1452–1461PubMedGoogle Scholar
  64. 64.
    Koreck A, Pivarcsi A, Dobozy A, Kemeny L (2003) The role of innate immunity in the pathogenesis of acne. Dermatology 206:96–105PubMedCrossRefGoogle Scholar
  65. 65.
    Jugeau S, Tenaud I, Knol AC, Jarrousse V, Quereux G, Khammari A, Dreno B (2005) Induction of toll-like receptors by Propionibacterium acnes. Br J Dermatol 153:1105–1113PubMedCrossRefGoogle Scholar
  66. 66.
    Nagy I, Pivarcsi A, Kis K, Koreck A, Bodai L, McDowell A, Seltmann H, Patrick S, Zouboulis CC, Kemeny L (2006) Propionibacterium acnes and lipopolysaccharide induce the expression of antimicrobial peptides and proinflammatory cytokines/chemokines in human sebocytes. Microbes Infect 8:2195–2205PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • István Nagy
    • 1
  • Lajos Kemény
    • 2
    • 3
  1. 1.Institute for Plant Genomics, Human Biotechnology and BioenergyBay Zoltán Foundation for Applied ResearchSzegedHungary
  2. 2.Department of Dermatology and AllergologyUniversity of SzegedSzegedHungary
  3. 3.Dermatological Research Group of the Hungarian Academy of Sciences and the University of Szeged Korányi fasor 6SzegedHungary

Personalised recommendations