Advertisement

Approximate Equilibria for Strategic Two Person Games

  • Paul G. Spirakis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4997)

Abstract

In view of the apparent intractability of constructing Nash Equilibria (NE in short) in polynomial time, even for bimatrix games, understanding the limitations of the approximability of the problem is an important challenge. The purpose of this document is to review a set of results, which have contributed significantly, and currently are the state-of-art with respect to the polynomial time construction of approximate Nash equilibria in bimatrix games. Most of the results discussed here are joint work of the author and of the union of his coauthors in various papers, namely S. Kontogiannis, P. Panagopoulou and H. Tsaknakis.

Keywords

Nash Equilibrium Polynomial Time Polynomial Time Approximation Scheme Fully Polynomial Time Approximation Scheme Approximate Equilibrium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abbott, T., Kane, D., Valiant, P.: On the complexity of two-player win-lose games. In: Proc. of 46th IEEE Symp. on Found. of Comp. Sci. (FOCS 2005), pp. 113–122 (2005)Google Scholar
  2. 2.
    Althöfer, I.: On sparse approximations to randomized strategies and convex combinations. Linear Algebra and Applications 199, 339–355 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bosse, H., Byrka, J., Markakis, E.: New Algorithms for Approximate Nash Equilibria in Bimatrix Games. In: Deng, X., Graham, F.C. (eds.) WINE 2007. LNCS, vol. 4858, Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Bárány, I., Vempala, S., Vetta, A.: Nash equilibria in random games. In: Proc. of 46th IEEE Symp. on Found. of Comp. Sci. (FOCS 2005), pp. 123–131. IEEE Computer Society Press, Los Alamitos (2005)Google Scholar
  5. 5.
    Chen, X., Deng, X.: Settling the complexity of 2-player nash equilibrium. In: Proc. of 47th IEEE Symp on Found of Comp. Sci. (FOCS 2006), pp. 261–272. IEEE Computer Society Press, Los Alamitos (2006)Google Scholar
  6. 6.
    Chen, X., Deng, X., Teng, S.: Computing nash equilibria: Approximation and smoothed complexity. In: Proc. of 47th IEEE Symp on Found of Comp Sci (FOCS 2006), pp. 603–612. IEEE Computer Society Press, Los Alamitos (2006)Google Scholar
  7. 7.
    Chen, X., Deng, X., Teng, S.: Sparse Games Are Hard. In: Spirakis, P.G., Mavronicolas, M., Kontogiannis, S.C. (eds.) WINE 2006. LNCS, vol. 4286, pp. 262–273. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Conitzer, V., Sandholm, T.: Complexity results about nash equilibria. In: In Proc. of 18th Int Joint Conf on Art. Intel (IJCAI 2003), pp. 765–771. Morgan Kaufmann, San Francisco (2003)Google Scholar
  9. 9.
    Daskalakis, C., Goldberg, P., Papadimitriou, C.: The complexity of computing a nash equilibrium. In: Proc. of 38th ACM Symp on Th of Comp (STOC 2006), pp. 71–78 (2006)Google Scholar
  10. 10.
    Daskalakis, C., Mehta, A., Papadimitriou, C.: A Note on Approximate Nash Equilibria. In: Spirakis, P.G., Mavronicolas, M., Kontogiannis, S.C. (eds.) WINE 2006. LNCS, vol. 4286, pp. 297–306. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Daskalakis, C., Mehta, A., Papadimitriou, C.: Progress in approximate nash equilibrium. In: Proc. of 8th ACM Conf. on El. Comm. (EC 2007), pp. 355–358 (2007)Google Scholar
  12. 12.
    Daskalakis, C., Papadimitriou, C.: Three player games are hard. Technical Report TR05-139, Electr. Coll. on Comp. Compl. (ECCC) (2005) Google Scholar
  13. 13.
    Gilboa, I., Zemel, E.: Nash and correlated equilibria: Some complexity considerations. Games & Econ. Behavior 1, 80–93 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Goldberg, P., Papadimitriou, C.: Reducibility among equilibrium problems. In: Proc. of 38th ACM Symp. on Th. of Comp. (STOC 2006), pp. 61–70 (2006)Google Scholar
  15. 15.
    Kontogiannis, S.C., Panagopoulou, P., Spirakis, P.G.: Polynomial Algorithms for Approximating Nash Equilibria of Bimatrix Games. In: Spirakis, P.G., Mavronicolas, M., Kontogiannis, S.C. (eds.) WINE 2006. LNCS, vol. 4286, pp. 286–296. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Spirakis, P.G., Kontogiannis, S.C.: Efficient Algorithms for Constant Well Supported Approximate Equilibria in Bimatrix Games. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 595–606. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Kontogiannis, S.C., Spirakis, P.G.: Well Supported Approximate Equilibria in Bimatrix Games: A Graph Theoretic Approach. In: Kučera, L., Kučera, A. (eds.) MFCS 2007. LNCS, vol. 4708, pp. 596–608. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. 18.
    Lemke, C., Howson, J.T.: Equilibrium points of bimatrix games. Journal of the Society for Industrial and Applied Mathematics 12:413423, DELIS-TR-0487 (1964)Google Scholar
  19. 19.
    Lipton, R., Markakis, E., Mehta, A.: Playing large games using simple strategies. In: Proc. of 4th ACM Conf. on El. Comm. (EC 2003), pp. 36–41 (2003)Google Scholar
  20. 20.
    Nash, J.: Noncooperative games. Annals of Mathematics 54, 289–295 (1951)CrossRefGoogle Scholar
  21. 21.
    Papadimitriou, C.: On the complexity of the parity argument and other inefficient proofs of existence. J. Comp. Sys. Sci. 48, 498–532 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Papadimitriou, C.: Algorithms, games and the internet. In: Proc. of 33rd ACM Symp. on Th. of Comp. (STOC 2001), pp. 749–753 (2001)Google Scholar
  23. 23.
    Sandholm, T., Gilpin, A., Conitzer, V.: Mixed-integer programming methods for finding Nash equilibria. In: Proc. of the 20th Nat. Conf. on Art. Intel (AAAI 2005), pp. 495–501 (2005)Google Scholar
  24. 24.
    Savani, R., von Stengel, B.: Hard-to-solve bimatrix games. Econometrica 74(2), 397–429 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Tsaknakis, H., Spirakis, P.: An optimization approach for approximate Nash equilibria. In: Deng, X., Graham, F.C. (eds.) WINE 2007. LNCS, vol. 4858, Springer, Heidelberg (2007)CrossRefGoogle Scholar
  26. 26.
    Ye, Y.: A fully polynomial time approximation algorithm for computing a stationary point of the general linear complementarity problem. Mathematics of Operations Research 18, 334–345 (1993)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Paul G. Spirakis
    • 1
  1. 1.Research Academic Computer Technology InstitutePatra University CampusRio-PatraGreece

Personalised recommendations