Singleton Acyclic Mechanisms and Their Applications to Scheduling Problems

  • Janina Brenner
  • Guido Schäfer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4997)


Mehta, Roughgarden, and Sundararajan recently introduced a new class of cost sharing mechanisms called acyclic mechanisms. These mechanisms achieve a slightly weaker notion of truthfulness than the well-known Moulin mechanisms, but provide additional freedom to improve budget balance and social cost approximation guarantees. In this paper, we investigate the potential of acyclic mechanisms for combinatorial optimization problems. In particular, we study a subclass of acyclic mechanisms which we term singleton acyclic mechanisms. We show that every ρ-approximate algorithm that is partially increasing can be turned into a singleton acyclic mechanism that is weakly group-strategyproof and ρ-budget balanced. Based on this result, we develop singleton acyclic mechanisms for parallel machine scheduling problems with completion time objectives, which perform extremely well both with respect to budget balance and social cost.


Completion Time Social Cost Cost Sharing Total Weighted Completion Time Parallel Machine Schedule Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bleischwitz, Y., Monien, B.: Fair cost-sharing methods for scheduling jobs on parallel machines. In: Calamoneri, T., Finocchi, I., Italiano, G.F. (eds.) CIAC 2006. LNCS, vol. 3998, pp. 175–186. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Brenner, J., Schäfer, G.: Cost sharing methods for makespan and completion time scheduling. In: Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, pp. 670–681. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Brucker, P.: Scheduling Algorithms. Springer, New York, USA (1998)CrossRefzbMATHGoogle Scholar
  4. 4.
    Chawla, S., Roughgarden, T., Sundararajan, M.: Optimal cost-sharing mechanisms for Steiner forest problems. In: Proc. of the 2nd Int. Workshop on Internet and Network Economics, pp. 112–123 (2006)Google Scholar
  5. 5.
    Devanur, N., Mihail, M., Vazirani, V.: Strategyproof cost-sharing mechanisms for set cover and facility location games. In: Proc. of the ACM Conference on Electronic Commerce (2003)Google Scholar
  6. 6.
    Du, J., Leung, J.Y.T., Young, G.H.: Minimizing mean flow time with release time constraint. Theoretical Computer Science 75(3), 347–355 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Engels, D., Karger, D., Kolliopoulos, S., Sengupta, S., Uma, R., Wein, J.: Techniques for scheduling with rejection. Journal of Algorithms 49, 175–191 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Graham, R.L.: Bounds on multiprocessing timing anomalies. SIAM Journal on Applied Mathematics 17(2), 416–429 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Gupta, A., Könemann, J., Leonardi, S., Ravi, R., Schäfer, G.: An efficient cost-sharing mechanism for the prize-collecting Steiner forest problem. In: Proc. of the 18th ACM-SIAM Sympos. on Discrete Algorithms, pp. 1153–1162 (2007)Google Scholar
  10. 10.
    Immorlica, N., Mahdian, M., Mirrokni, V.S.: Limitations of cross-monotonic cost sharing schemes. In: Proc. of the 16th ACM-SIAM Sympos. on Discrete Algorithms, pp. 602–611 (2005)Google Scholar
  11. 11.
    Kawaguchi, T., Kyan, S.: Worst case bound of an LRF schedule for the mean weighted flow time problem. SIAM Journal on Computing 15(4), 1119–1129 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Könemann, J., Leonardi, S., Schäfer, G.: A group-strategyproof mechanism for Steiner forests. In: Proc. of the 16th ACM-SIAM Sympos. on Discrete Algorithms, pp. 612–619 (2005)Google Scholar
  13. 13.
    Könemann, J., Leonardi, S., Schäfer, G., van Zwam, S.: From primal-dual to cost shares and back: a stronger LP relaxation for the Steiner forest problem. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 930–942. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Mehta, A., Roughgarden, T., Sundararajan, M.: Beyond Moulin mechanisms. In: Proc. of the ACM Conference on Electronic Commerce (2007)Google Scholar
  15. 15.
    Moulin, H.: Incremental cost sharing: Characterization by coalition strategy-proofness. Social Choice and Welfare 16, 279–320 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Phillips, C., Stein, C., Wein, J.: Minimizing average completion time in the presence of release dates. Math. Program 82, 199–223 (1998)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Roughgarden, T., Sundararajan, M.: New trade-offs in cost-sharing mechanisms. In: Proc. of the 38th ACM Sympos. on Theory of Computing, pp. 79–88 (2006)Google Scholar
  18. 18.
    Roughgarden, T., Sundararajan, M.: Optimal efficiency guarantees for network design mechanisms. In: Proc. of the 12th Int. Conf. on Integer Programming and Combinatorial Optimization, pp. 469–483 (2007)Google Scholar
  19. 19.
    Schrage, L.: A proof of the optimality of the shortest remaining processing time discipline. Operations Research 16, 687–690 (1968)CrossRefzbMATHGoogle Scholar
  20. 20.
    Smith, W.: Various optimizers for single-stage production. Naval Research Logistics Quarterly 3, 59–66 (1956)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Janina Brenner
    • 1
  • Guido Schäfer
    • 1
  1. 1.Institute of MathematicsTechnical UniversityBerlinGermany

Personalised recommendations