Advertisement

Subjective vs. Objective Reality — The Risk of Running Late

  • Amos Fiat
  • Hila Pochter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4997)

Abstract

We study selfish agents that have a “distorted view” of reality. We introduce a framework of subjective vs. objective reality. This is very useful to model risk averse behavior. Natural quality of service issues can be cast as special cases thereof.

In particular, we study two applicable variants of the price of anarchy paradigm, the subjective price of anarchy where one compares the “optimal” subjective outcome to the outcome that arises from selfish subjective reality agents, and the objective price of anarchy where one compares the optimal objective outcome to that derived by selfish subjective agents.

Keywords

Nash Equilibrium Risk Aversion Related Server Congestion Game Pure Nash Equilibrium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ackermann, H., Röglin, H., Vöcking, B.: Pure nash equilibria in player-specific and weighted congestion games. In: Spirakis, P.G., Mavronicolas, M., Kontogiannis, S.C. (eds.) WINE 2006. LNCS, vol. 4286, pp. 50–61. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Altman, E., Saunders, A.: Credit risk measurement: Developments over the last 20 years. Journal of Banking & Finance 21, 1721–1742 (1998)CrossRefGoogle Scholar
  3. 3.
    Awerbuch, B., Azar, Y., Richter, Y., Tsur, D.: Tradeoffs in worst-case equilibria. In: Solis-Oba, R., Jansen, K. (eds.) WAOA 2003. LNCS, vol. 2909, pp. 41–52. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Czumaj, A., Vöcking, B.: Tight bounds for worst-case equilibria. In: SODA, pp. 413–420 (2002)Google Scholar
  5. 5.
    Elton, E., Gruber, M.: Modern portfolio theory, 1950 to date. Journal of Banking & Finance 21, 1743–1759 (1997)CrossRefGoogle Scholar
  6. 6.
    Gairing, M., Monien, B., Tiemann, K.: Routing (un-) splittable flow in games with player-specific linear latency functions. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 501–512. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Mavronicolas, M., Milchtaich, I., Monien, B., Tiemann, K.: Congestion games with player-specific constants. In: Kučera, L., Kučera, A. (eds.) MFCS 2007. LNCS, vol. 4708, pp. 633–644. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Milchtaich, I.: Congestion games with player-specific payoff functions. Games and Economic Behavior 13, 111–124 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Sharpe, W.: Mutual fund performance. Journal of Business 39(1), 119–138 (1966)CrossRefGoogle Scholar
  10. 10.
    Sortino, F., Price, L.: Performance measurement in a downside risk framework. The Journal of Investing, 59–65Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Amos Fiat
    • 1
  • Hila Pochter
    • 1
  1. 1.School of Computer ScienceTel Aviv UniversityIsrael

Personalised recommendations