The Local and Global Price of Anarchy of Graphical Games

  • Oren Ben-Zwi
  • Amir Ronen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4997)


This paper initiates a study of connections between local and global properties of graphical games. Specifically, we introduce a concept of local price of anarchy that quantifies how well subsets of agents respond to their environments. We then show several methods of bounding the global price of anarchy of a game in terms of the local price of anarchy. All our bounds are essentially tight.


Graphical games price of anarchy local global properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anshelevich, E., Dasgupta, A., Kleinberg, J., Tardos, E., Wexler, T., Roughgarden, T.: The Price of Stability for Network Design with Fair Cost Allocation. In: The 45th Annual IEEE Symposium on Foundations of Computer Science (FoCS), pp. 59–73 (2004)Google Scholar
  2. 2.
    Awerbuch, B., Azar, Y., Epstein, A.: The Price of Routing Unsplittable Flow. In: The 37th Annual ACM Symposium on Theory of Computing (SToC) (2005)Google Scholar
  3. 3.
    Awerbuch, B., Peleg, D.: Sparse Partitions. In: The 31st Annual IEEE Symposium on Foundations of Computer Science (FoCS), pp. 503–513 (1990)Google Scholar
  4. 4.
    Chen, X., Deng, X.: Settling the Complexity of 2-Player Nash-Equilibrium. In: The 47th Annual IEEE Symposium on Foundations of Computer Science (FoCS) (2006)Google Scholar
  5. 5.
    Daskalakis, C., Goldberg, P.W., Papadimitriou, C.: The Complexity of Computing a Nash Equilibrium. In: The 38th Annual ACM Symposium on Theory of Computing (SToC) (2006)Google Scholar
  6. 6.
    Elkind, E., Goldberg, L.A., Goldberg, P.W.: Nash Equilibria in Graphical Games on Trees Revisited. In: The 7th ACM conf. on Electronic Commerce (EC 2006) (2006)Google Scholar
  7. 7.
    Fischer, E.: The Art of Uninformed Decisions: A Primer to Property Testing. The Bulletin of the European Association for Theoretical Computer Science 75, 97–126 (2001)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Galeotti, A., Goyaly, S., Jackson, M.O., Vega-Redondox, F., Yariv, L.: Network Games (unpublished, 2006),
  9. 9.
    Kakade, S., Kearns, M., Ortiz, L., Pemantle, R., Suri, S.: Economic Properties of Social Networks. In: The 18th Annual Conference on Neural Information Processing Systems (NIPS) (2004)Google Scholar
  10. 10.
    Kearns, M., Littman, M., Singh, S.: Graphical Models for Game Theory. In: The 17th Conference in Uncertainty in Artificial Intelligence (UAI) (2001)Google Scholar
  11. 11.
    Koutsoupias, E., Papadimitriou, C.: Worst Case Equilibria. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, Springer, Heidelberg (1999)CrossRefGoogle Scholar
  12. 12.
    Linial, N., Peleg, D., Rabinovich, Y., Saks, M.: Sphere Packing and Local Majorities in Graphs. In: The 2nd Israel Symp. on Theory of Computing Systems (1993)Google Scholar
  13. 13.
    Linial, N., Saks, M.: Low Diameter Graph Decompositions. Combinatorica Issue Volume 13, 441–454 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Nash, J.F.: Non-Cooperative Games. Annals of Mathematics 54, 286–295 (1951)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Roughgarden, T., Tardos, E.: How Bad is Selfish Routing? In: The 41st Annual IEEE Symposium on Foundations of Computer Science (FoCS) (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Oren Ben-Zwi
    • 1
  • Amir Ronen
    • 2
  1. 1.Haifa UniversityHaifaIsrael
  2. 2.Faculty of Industrial Engineering and ManagementTechnionIsrael

Personalised recommendations