Frugal Routing on Wireless Ad-Hoc Networks

  • Gunes Ercal
  • Rafit Izhak-Ratzin
  • Rupak Majumdar
  • Adam Meyerson
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4997)


We study game-theoretic mechanisms for routing in ad-hoc networks. Game-theoretic mechanisms capture the non-cooperative and selfish behavior of nodes in a resource-constrained environment. There have been some recent proposals to use incentive-based mechanisms (in particular, VCG) for routing in wireless ad-hoc networks, and some frugality bounds are known when the connectivity graph is essentially complete. We show frugality bounds for random geometric graphs, a well-known model for ad-hoc wireless connectivity. Our main result demonstrates that VCG-based routing in ad-hoc networks exhibits small frugality ratio (i.e., overpayment) with high probability. In addition, we study a more realistic generalization where sets of agents can form communities to maximize total profit. We also analyze the performance of VCG under such a community model and show similar bounds. While some recent truthful protocols for the traditional (individual) agent model have improved upon the frugality of VCG by selecting paths to minimize not only the cost but the overpayment, we show that extending such protocols to the community model requires solving NP-complete problems which are provably hard to approximate.


Short Path Community Model Cost Distribution Random Geometric Graph Truthful Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Papadimitriou, C.: Algorithms, games, and the internet. In: STOC (2001)Google Scholar
  2. 2.
    Anderegg, L., Eidenbenz, S.: Ad hoc-VCG: A truthful and cost-efficient routing protocol for mobile ad hoc networks with selfish agents. In: MOBICOM (2003)Google Scholar
  3. 3.
    Kreps, D.M.: A Course in Microeconomic Theory. Princeton University Press, Princeton (1990)Google Scholar
  4. 4.
    Nisan, N., Ronen, A.: Algorithmic mechanism design. Games and Economic Behavior 35, 166–196 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Vickrey, W.: Counterspeculation, auctions, and competitive sealed tenders. Journal of Finance 16, 8–37 (1961)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Clarke, E.: Multipart pricing of public goods. Public Choice 11, 17–33 (1971)CrossRefGoogle Scholar
  7. 7.
    Groves, T.: Incentives in teams. Econometrica 41, 617–631 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Archer, A., Tardos, E.: Frugal path mechanisms. In: SODA (2002)Google Scholar
  9. 9.
    Talwar, K.: The price of truth: Frugality in truthful mechanisms. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 608–619. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Karlin, A., Kempe, D., Tamir, T.: Beyond VCG: Frugality of truthful mechanisms. In: FOCS (2005)Google Scholar
  11. 11.
    Kortuem, G., Segall, Z.: Wearable communities: Augmenting social networks with wearable computers. IEEE Pervasive Computing Magazine 2(1), 71–78 (2003)CrossRefGoogle Scholar
  12. 12.
    Schulz, S., Herrmann, K., Kalckloesch, R., Schwotzer, T.: Towards trust-based knowledge management in mobile communities. In: IAAA (2003)Google Scholar
  13. 13.
    Musolesi, M., Hailes, S., Mascolo, C.: An ad hoc mobility model founded on social network theory. In: MSWiM (2004)Google Scholar
  14. 14.
    Penrose, M.D.: Random Geometric Graphs. Oxford University Press, Oxford (2003)CrossRefzbMATHGoogle Scholar
  15. 15.
    Gupta, P., Kumar, P.: The capacity of wireless networks. IEEE TIT, Los Alamitos (2000)zbMATHGoogle Scholar
  16. 16.
    Goel, A., Rai, S., Krishnamachari, B.: Monotone properties of random geometric graphs have sharp thresholds. Annals of Applied Probability 15 (2005)Google Scholar
  17. 17.
    Avin, C., Ercal, G.: On the Cover Time of Random Geometric Graphs. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 677–689. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Diaz, J., Petit, J., Serna, M.J.: Faulty random geometric networks. PPL (2000)Google Scholar
  19. 19.
    Motwani, R., Raghavan, P.: Randomized algorithms, Cambridge (1995)Google Scholar
  20. 20.
    Ercal, G., Izhak-Ratzin, R., Majumdar, R., Meyerson, A.: Frugal routing on wireless ad-hoc networks. Technical report, University of California, Los Angeles (2008) Google Scholar
  21. 21.
    Nisan, N., Ronen, A.: Computationally feasible VCG mechanisms. In: EC (2000)Google Scholar
  22. 22.
    Du, Y., Sami, R., Shi, Y.: Path auction games when an agent can own multiple edges. In: NetEcon (2006)Google Scholar
  23. 23.
    Immorlica, N., Karger, D., Nikolova, E., Sami, R.: First-price path auctions. In: EC (2005)Google Scholar
  24. 24.
    Sun, H., Song, J.: Strategy proof trust management in wireless ad hoc network. In: Electrical and Computer Eng’ (2004)Google Scholar
  25. 25.
    Wang, W., Li, X.-Y., Eidenbenz, S., Wang, Y.: Ours: optimal unicast routing systems in non-cooperative wireless networks. In: MobiCom (2006)Google Scholar
  26. 26.
    Zhong, S., Li, L.E., Liu, Y.G., Yang, Y(R.): On designing incentive-compatible routing and forwarding protocols in wireless ad-hoc networks: an integrated approach using game theoretical and cryptographic techniques. In: MobiCom (2005)Google Scholar
  27. 27.
    Buttyán, L., Hubaux, J.: A virtual currency to stimulate cooperation in self-organized ad hoc networks. Technical Report DSC (2001) Google Scholar
  28. 28.
    Elkind, E., Sahai, A., Steiglitz, K.: Frugality in path auctions. In: SODA (2004)Google Scholar
  29. 29.
    Yuan, S., Jue, J.P.: Dynamic lightpath protection in WDM mesh networks under wavelength-continuity and risk-disjoint constraints. Comput. Netw (2005)Google Scholar
  30. 30.
    Dinur, I., Safra, S.: On the hardness of approximating label-cover. In: IPL (2004)Google Scholar
  31. 31.
    Alekhnovich, M., Buss, S.R., Moran, S., Pitassi, T.: Minimum propositional proof length is NP-hard to linearly approximate. In: Brim, L., Gruska, J., Zlatuška, J. (eds.) MFCS 1998. LNCS, vol. 1450, pp. 176–184. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  32. 32.
    Carr, R.D., Doddi, S., Konjevod, G., Marathe, M.: On the red-blue set cover problem. In: SODA (2000)Google Scholar
  33. 33.
    Wirth, H.C.: Multicriteria Approximation of Network Design and Network Upgrade Problems. PhD thesis (2001) Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Gunes Ercal
    • 1
  • Rafit Izhak-Ratzin
    • 1
  • Rupak Majumdar
    • 1
  • Adam Meyerson
    • 1
  1. 1.University of CaliforniaLos AngelesUSA

Personalised recommendations