Atomic Congestion Games: Fast, Myopic and Concurrent

  • Dimitris Fotakis
  • Alexis C. Kaporis
  • Paul G. Spirakis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4997)


We study here the effect of concurrent greedy moves of players in atomic congestion games where n selfish agents (players) wish to select a resource each (out of m resources) so that her selfish delay there is not much. The problem of “maintaining” global progress while allowing concurrent play is exactly what is examined and answered here. We examine two orthogonal settings : (i) A game where the players decide their moves without global information, each acting “freely” by sampling resources randomly and locally deciding to migrate (if the new resource is better) via a random experiment. Here, the resources can have quite arbitrary latency that is load dependent. (ii) An “organised” setting where the players are pre-partitioned into selfish groups (coalitions) and where each coalition does an improving coalitional move. Our work considers concurrent selfish play for arbitrary latencies for the first time. Also, this is the first time where fast coalitional convergence to an approximate equilibrium is shown.


Nash Equilibrium Full Version Strategy Space Congestion Game Potential Game 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ackermann, H., Roeglin, H., Voecking, B.: On the impact of combinatorial structure on congestion games. In: FOCS (2006)Google Scholar
  2. 2.
    Arndt, H.: Load balancing: dimension exchange on product graphs. In: 18th International Symposium on Parallel and Distributed Processing (2004)Google Scholar
  3. 3.
    Awerbuch, B., Azar, Y., Epstein, A.: The Price of Routing Unsplittable Flow. In: STOC (2005)Google Scholar
  4. 4.
    Berenbrink, P., Friedetzky, T., Goldberg, L.A., Goldberg, P., Hu, Z., Martin, R.: Distributed selfish load balancing. In: SODA (2006)Google Scholar
  5. 5.
    Blum, A., Even-Dar, E., Ligett, K.: Routing without regret: on convergence to nash equilibria of regret-minimizing algorithms in routing games. In: PODC (2006)Google Scholar
  6. 6.
    Chien, S., Sinclair, A.: Convergece to Approximate Nash Equilibria in Congestion Games. In: SODA (2007)Google Scholar
  7. 7.
    Christodoulou, G., Koutsoupias, E.: The Price of Anarchy of Finite Congestion Games. In: STOC (2005)Google Scholar
  8. 8.
    Christodoulou, G., Mirrokni, V.S., Sidiropoulos, A.: Convergence and approximation in potential games. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 349–360. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Cybenko, G.: Load balancing for distributed memory multiprocessors. J. Parallel Distrib. Comput. 7, 279–301 (1989)CrossRefGoogle Scholar
  10. 10.
    Even-Dar, E., Mansour, Y.: Fast convergence of selfish rerouting. In: SODA (2005)Google Scholar
  11. 11.
    Even-Dar, E., Kesselman, A., Mansour, Y.: Convergence Time to Nash Equilibria. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 502–513. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Fabrikant, A., Papadimitriou, C., Talwar, K.: The Complexity of Pure Nash Equilibria. In: STOC (2004)Google Scholar
  13. 13.
    Fischer, S., Räcke, H., Vöcking, B.: Fast convergence to wardrop equilibria by adaptive sampling methods. In: STOC (2006)Google Scholar
  14. 14.
    Fotakis, D., Kontogiannis, S., Spirakis, P.: Selfish Unsplittable Flows. In: TCS, vol. 348, pp. 226–239 (2005)Google Scholar
  15. 15.
    Fotakis, D., Kontogiannis, S., Spirakis, P.: Atomic Congestion Games among Coalitions. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 572–583. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Ghosh, B., Muthukrishnan, S.: Dynamic load balancing in parallel and distributed networks by random matchings. In: SPAA (1994)Google Scholar
  17. 17.
    Goemans, M.X., Mirrokni, V.S., Vetta, A.: Sink equilibria and convergence. In: FOCS 2005 (2005)Google Scholar
  18. 18.
    Goldberg, P.W.: Bounds for the convergence rate of randomized local search in a multiplayer load-balancing game. In: PODC (2004)Google Scholar
  19. 19.
    Hayrapetyan, A., Tardos, É., Wexler, T.: The Effect of Collusion in Congestion Games. In: STOC (2006)Google Scholar
  20. 20.
    Hosseini, S.H., Litow, B., Malkawi, M.I., McPherson, J., Vairavan, K.: Analysis of a graph coloring based distributed load balancing algorithm.. J. Par. Distr. Comp. 10, 160–166 (1990)CrossRefGoogle Scholar
  21. 21.
    Ieong, S., McGrew, R., Nudelman, E., Shoham, Y., Sun, Q.: Fast and compact: A simple class of congestion games. In: AAAI (2005)Google Scholar
  22. 22.
    Libman, L., Orda, A.: Atomic resource sharing in noncooperative networks. Telecommunication Systems 17(4), 385–409 (2001)CrossRefzbMATHGoogle Scholar
  23. 23.
    Mirrokni, V., Vetta, A.: Convergence Issues in Competitive Games. In: Jansen, K., Khanna, S., Rolim, J.D.P., Ron, D. (eds.) RANDOM 2004 and APPROX 2004. LNCS, vol. 3122, pp. 183–194. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  24. 24.
    Monderer, D., Shapley, L.: Potential Games. Games& Econ. Behavior 14, 124–143 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995)CrossRefzbMATHGoogle Scholar
  26. 26.
    Orda, A., Rom, R., Shimkin, N.: Competitive routing in multiuser communication networks. IEEE/ACM Trans. on Net. 1(5), 510–521 (1993)CrossRefGoogle Scholar
  27. 27.
    Rosenthal, R.W.: A Class of Games Possessing Pure-Strategy Nash Equilibria. International Journal of Game Theory 2, 65–67 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Sandholm, W.H.: Population Games and Evolutionary Dynamics. MIT Press (to be published),
  29. 29.
    Sandholm, W.H.: Potential Games with Continuous Player Sets. Journal of Economic Theory 97, 81–108 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
  31. 31.
    Weibull, J.W.: Evolutionary Game Theory. MIT Press, Cambridge (1995)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Dimitris Fotakis
    • 3
  • Alexis C. Kaporis
    • 1
    • 2
  • Paul G. Spirakis
    • 1
    • 2
  1. 1.Dept. of Computer Eng. and InformaticsUniv of PatrasPatrasGreece
  2. 2.Research Academic Comp. Tech. Inst.PatrasGreece
  3. 3.Dept. of Information & Communication Systems Eng.Univ. of the AegeanSamosGreece

Personalised recommendations