Window-Games between TCP Flows

  • Pavlos S. Efraimidis
  • Lazaros Tsavlidis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4997)


We consider network congestion problems between TCP flows and define a new game, the Window-game, which models the problem of network congestion caused by the competing flows. Analytical and experimental results show the relevance of the Window-game to the real TCP game and provide interesting insight on Nash equilibria of the respective network games. Furthermore, we propose a new algorithmic queue mechanism, called Prince, which at congestion makes a scapegoat of the most greedy flow. Preliminary evidence shows that Prince achieves efficient Nash equilibria while requiring only limited computational resources.


Nash Equilibrium Packet Loss Congestion Control Repeated Game Congestion Window 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aghassi, M., Bertsimas, D.: Robust game theory. Math. Program. 107(1), 231–273 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Akella, A., Seshan, S., Shenker, S., Stoica, I.: Exploring congestion control (2002)Google Scholar
  3. 3.
    Akella, A., Seshan, S., Karp, R., Shenker, S., Papadimitriou, C.: Selfish behavior and stability of the internet: a game-theoretic analysis of tcp. In: SIGCOMM 2002: Proceedings of the 2002 conference on Applications, technologies, architectures, and protocols for computer communications, pp. 117–130. ACM Press, New York (2002)CrossRefGoogle Scholar
  4. 4.
    Ashlagi, I., Monderer, D., Tennenholtz, M.: Resource selection games with unknown number of players. In: AAMAS 2006: Proceedings of the fifth international joint conference on Autonomous agents and multiagent systems, pp. 819–825. ACM Press, New York (2006)CrossRefGoogle Scholar
  5. 5.
    Bertsekas, D., Gallager, R. (eds.): Data networks. Publication New Delhi. Prentice-Hall of India Pvt. Ltd., Englewood Cliffs (1987)Google Scholar
  6. 6.
    Chiu, D.-M., Jain, R.: Analysis of the increase/decrease algorithms for congestion avoidance in computer networks. j-COMP-NET-ISDN 17(1), 1–14 (1989)CrossRefzbMATHGoogle Scholar
  7. 7.
    Fall, K., Floyd, S.: Simulation-based comparison of tahoe, reno, and sack tcp. Computer Communication Review 26, 5–21 (1996)CrossRefGoogle Scholar
  8. 8.
    Floyd, S., Jacobson, V.: Random early detection gateways for congestion avoidance. IEEE/ACM Transactions on Networking 1(4), 397–413 (1993)CrossRefGoogle Scholar
  9. 9.
    Fotakis, D., Kontogiannis, S., Spirakis, P.: Selfish unsplittable flows. Theor. Comput. Sci. 348(2), 226–239 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Habib, M., McDiarmid, C., Ramirez-Alfonsin, J., Reed, B.: Probabilistic Methods for Algorithmic Discrete Mathematics. Springer, Heidelberg (1998)CrossRefzbMATHGoogle Scholar
  11. 11.
    Hahne, E.L.: Round-robin scheduling for max-min fairness in data networks. IEEE Journal of Selected Areas in Communications 9(7), 1024–1039 (1991)CrossRefGoogle Scholar
  12. 12.
    Jacobson, V.: Congestion avoidance and control. In: SIGCOMM 1988: Symposium proceedings on Communications architectures and protocols, pp. 314–329. ACM, New York (1988)Google Scholar
  13. 13.
    Karp, R., Koutsoupias, E., Papadimitriou, C., Shenker, S.: Optimization problems in congestion control. In: FOCS 2000: Proceedings of the 41st Annual Symposium on Foundations of Computer Science, Washington, DC, USA, p. 66. IEEE Computer Society, Los Alamitos (2000)Google Scholar
  14. 14.
    La, R.J., Anantharam, V.: Window-based congestion control with heterogeneous users. In: INFOCOM 2001. Twentieth Annual Joint Conference of the IEEE Computer and Communications Societies, vol. 3, pp. 1320–1329. IEEE, Los Alamitos (2001)Google Scholar
  15. 15.
    Milchtaich, I.: Congestion games with player-specific payoff functions. Games and Economic Behavior 13, 111–124 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Monderer, D., Shapley, L.: Potential games. Games and Economic Behavior 14, 124–143 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    NetKnack: A simulator for the window-game,
  18. 18.
    NS-2. The network simulator.
  19. 19.
    Padhye, J., Firoiu, V., Towsley, D.F., Kurose, J.F.: Modeling tcp reno performance: a simple model and its empirical validation. IEEE/ACM Trans. Netw. 8(2), 133–145 (2000)CrossRefGoogle Scholar
  20. 20.
    Pan, R., Prabhakar, B., Psounis, K.: Choke, a stateless active queue management scheme for approximating fair bandwidth allocation. In: INFOCOM, pp. 942–951 (2000)Google Scholar
  21. 21.
    Papadimitriou, C.: Algorithms, games, and the internet. In: STOC 2001: Proceedings of the thirty-third annual ACM symposium on Theory of computing, pp. 749–753. ACM Press, New York (2001)CrossRefGoogle Scholar
  22. 22.
    Wolfram Research. Mathematica (2007)Google Scholar
  23. 23.
    Rosenthal, R.W.: A class of games possessing pure-strategy nash equilibria. International Journal of Game Theory 2, 65–67 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Shenker, S.J.: Making greed work in networks: a game-theoretic analysis of switch service disciplines. IEEE/ACM Trans. Netw. 3(6), 819–831 (1995)CrossRefGoogle Scholar
  25. 25.
    Stoica, I., Shenker, S., Zhang, H.: Core-stateless fair queueing: achieving approximately fair bandwidth allocations in high speed networks. SIGCOMM Comput. Commun. Rev. 28(4), 118–130 (1998)CrossRefGoogle Scholar
  26. 26.
    Stoica, I., Zhang, H.: Providing guaranteed services without per flow management. SIGCOMM Comput. Commun. Rev. 29(4), 81–94 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Pavlos S. Efraimidis
    • 1
  • Lazaros Tsavlidis
    • 1
  1. 1.Department of Electrical and Computer EngineeringDemocritus University of ThraceXanthiGreece

Personalised recommendations