Skip to main content

Proteomics and its Application to the Human-Pathogenic Fungi Aspergillus fumigatus and Candida albicans

  • Chapter
Human and Animal Relationships

Part of the book series: The Mycota ((MYCOTA,volume 6))

The number of opportunistic fungal infections has increased significantly during the past decades, at least in part as the result of a rising number of immunocompromised patients. Individuals at risk for the development of a serious fungal infection include patients undergoing solid-organ, blood and bone marrow transplantation, cancer patients, patients of the acquired immunodeficiency syndrome (AIDS) and other patients receiving immunosuppressive treatment (Pfaller and Diekema 2004; Brakhage 2005). Today, invasive fungal infections are among the most challenging problems in haematology, oncology and intensive care medicine (Vandewoude et al.2006). Amongthe approximately 140 000 known fungal species only a few cause human infections (Richardson 2003). The most predominant pathogens are the yeast Candida albicans and the filamentous fungus Aspergillus fumigatus, but also other fungal pathogens frequently cause systemic infections, such as the yeast species C. glabrata, C. krusei, C. tropicalis, Cryptococcus and Trichosporon, filamentous fungi such as Aspergillus, Fusarium, Rhizopus and Mucor, and dematiaceous hyphomycetes (Richardson 2005).

This chapter outlines a general overview of the two methods used for proteomic studies: 2D gel electrophoresis and liquid chromatography coupled to mass spectrometry, putting the main emphasis on gel-based proteomics. Since the number of publications about proteomics is tremendous and not all aspects can be discussed, the reader is referred in some cases to excellent reviews. Subsequently, recent advances in the proteomic analysis of C. albicans and A. fumigatus are discussed. Until now, there are only a few studies for A. fumigatus, but a lot of knowledge has already been gained for C. albicans and proteomic investigations were reviewed by Niimi et al. (1999), Pitarch et al. (2003, 2006b, c, 2007), Rupp (2004) and Thomas et al. (2006b).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aebersold R, Goodlett DR (2001) Mass spectrometry in proteomics. Chem Rev 101:269–295

    PubMed  CAS  Google Scholar 

  • Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422:198–207

    PubMed  CAS  Google Scholar 

  • Akins RE, Levin PM, Tuan RS (1992) Cetyltrimethylammonium bromide discontinuous gel electrophoresis: M r-based separation of proteins with retention of enzymatic activity. Anal Biochem 202:172–178

    PubMed  CAS  Google Scholar 

  • Alban A, David SO, Bjorkesten L, Andersson C, Sloge E, Lewis S, Currie I (2003) A novel experimental design for comparative two-dimensional gel analysis: two dimensional difference gel electrophoresis incorporating a pooled internal standard. Proteomics 3:36–44

    PubMed  CAS  Google Scholar 

  • Albrecht A, Felk A, Pichova I, Naglik JR, Schaller M, de Groot P, Maccallum D, Odds FC, Schäfer W, Klis F, Monod M, Hube B (2006) Glycosylphosphatidylinositol-anchored proteases of Candida albicans target proteins necessary for both cellular processes and host–pathogen interactions. J Biol Chem 281:688–694

    PubMed  CAS  Google Scholar 

  • Albrecht D, Kniemeyer O, Brakhage AA, Berth M, Guthke R (2007) Integration of transcriptome and proteome data from human-pathogenic fungi by using a data warehouse. J Integr Bioinf 4:52

    Google Scholar 

  • Albrecht D, Guthke R, Kniemeyer O, Brakhage AA (2008) Systems biology of human-pathogenic fungi. In: Daskalaki A (ed) Handbook of research on systems biology applications in medicine. Information Science Reference, Hershey (in press)

    Google Scholar 

  • Andersen JS, Mann M (2006) Organellar proteomics: turning inventories into insights. EMBO Rep 7:874–879

    PubMed  CAS  Google Scholar 

  • Anderson N, Anderson N (1978a) Analytical techniques for cell fractions. XXII. Two-dimensional analysis of serum and tissue proteins: multiple gradient-slab gel electrophoresis. Anal Biochem 85:341–354

    PubMed  CAS  Google Scholar 

  • Anderson N, Anderson N (1978b) Analytical techniques for cell fractions. XXI. Two-dimensional analysis of serum and tissue proteins: multiple isoelectric focusing 1. Anal Biochem 85:331–340

    PubMed  CAS  Google Scholar 

  • Andersson L, Porath J (1986) Isolation of phosphoproteins by immobilized metal (Fe3+) affinity chromatography. Anal Biochem 154:250–254

    PubMed  CAS  Google Scholar 

  • Asif AR, Oellerich M, Amstrong VW, Riemenschneider B, Monod M, Reichard U (2006) Proteome of conidial surface associated proteins of Aspergillus fumigatus reflecting potential vaccine candidates and allergens. J Proteome Res 5:954–962

    PubMed  CAS  Google Scholar 

  • Bader T, Schröppel K, Bentink S, Agabian N, Köhler G, Morschhäuser J (2006) Role of calcineurin in stress resistance, morphogenesis, and virulence of a Candida albicans wild-type strain. Infect Immun 74:4366–4369

    PubMed  CAS  Google Scholar 

  • Bahn YS, Xue C, Idnurm A, Rutherford JC, Heitman J, Cardenas ME (2007) Sensing the environment: lessons from fungi. Nat Rev Microbiol 5:57–69

    PubMed  CAS  Google Scholar 

  • Barea PL, Calvo E, Rodriguez JA, Rementeria A, Calcedo R, Sevilla MJ, Ponton J, Hernando FL (1999) Characterization of Candida albicans antigenic determinants by two-dimensional polyacrylamide gel electrophoresis and enhanced chemiluminescence. FEMS Immunol Med Microbiol 23:343–354

    PubMed  CAS  Google Scholar 

  • Beauvais A, Schmidt C, Guadagnini S, Roux P, Perret E, Henry C, Paris S, Mallet A, Prévost MC, Latgé JP (2007) An extracellular matrix glues together the aerial-grown hyphae of Aspergillus fumigatus. Cell Microbiol 9:1588–1600

    PubMed  CAS  Google Scholar 

  • Beavis RC, Chait BT (1990) Rapid, sensitive analysis of protein mixtures by mass spectrometry. Proc Natl Acad Sci USA 87:6873–6877

    PubMed  CAS  Google Scholar 

  • Bell PJ, Karuso P (2003) Epicocconone, a novel fluorescent compound from the fungus Epicoccum nigrim. J Am Chem Soc 125:9304–9305

    PubMed  CAS  Google Scholar 

  • Bellocchio S, Bozza S, Montagnoli C, Perruccio K, Gaziano R, Pitzurra L, Romani L (2005) Immunity to Aspergillus fumigatus: the basis for immunotherapy and vaccination. Med Mycol 43: S181–S188

    PubMed  CAS  Google Scholar 

  • Berggren KN, Chernokalskaya E, Steinberg TH, Kemper C, Lopez MF, Diwu Z, Haugland RP, Patton WF (2000) Background-free, high sensitivity staining of proteins in one- and two-dimensional sodium dodecyl sulfate–polyacrylamide gels using luminescent ruthenium complex. Electrophoresis 21:2509–2521

    PubMed  CAS  Google Scholar 

  • Berggren KN, Schulenberg B, Lopez MF, Steinberg TH, Bogdanova A, Smejkal G, Wang A, Patton WF (2002) An improved formulation of SYPRO Ruby protein gel stain: comparison with the original formulation and with a ruthenium II tris (bathophenanthroline disulfonate) formulation. Proteomics 2:486–498

    PubMed  CAS  Google Scholar 

  • Biron DG, Brun C, Lefevre T, Lebarbenchon C, Loxdale HD, Chevenet F, Brizard JP, Thomas F (2006) The pitfalls of proteomics experiments without the correct use of bioinformatics tools. Proteomics 6:5577–5596

    PubMed  CAS  Google Scholar 

  • Bjellqvist B, Ek K, Righetti PG, Gianazza E, Görg A, Westermeier R, Postel W (1982) High-resolution two-dimensional electrophoresis with isoelectric focusing in immobilized pH gradients. J Biochem Biophys Methods 6:317–339

    PubMed  CAS  Google Scholar 

  • Blomberg A (2002) Use of two-dimensional gels in yeast proteomics. Methods Enzymol 350:559–584

    PubMed  CAS  Google Scholar 

  • Bonenfant D, Schmelzle T, Jacinto E, Crespo JL, Mini T, Hall MN, Jenoe P (2003) Quantitation of changes in protein phosphorylation: a simple method based on stable isotope labeling and mass spectrometry. Proc Natl Acad Sci USA:100:880–885

    PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 7:248–254

    Google Scholar 

  • Brakhage AA (2005) Systemic fungal infections caused by Aspergillus species: Epidemiology, infection process and virulence determinants. Curr Drug Targets 6:875–886

    PubMed  CAS  Google Scholar 

  • Brakhage AA, Langfelder K (2002) Menacing mold: the molecular biology of Aspergillus fumigatus. Annu Rev Microbiol 56:433–455

    PubMed  CAS  Google Scholar 

  • Brakhage AA, Liebmann B (2005) Aspergillus fumigatus conidial pigment and cAMP signal transduction: significance for virulence. Med Mycol 43:S75–S82

    PubMed  CAS  Google Scholar 

  • Braun BR et al (2005) A human-curated annotation of the Candida albicans genome. PloS Genet 1(1):e1

    Google Scholar 

  • Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert C, Aach J, Ansorge W, Ball CA, Causton HC, Gaasterland T, Glenisson P, Holstege FC, Kim IF, Markowitz V, Matese JC, Parkinson H, Robinson A, Sarkans U, Schulze-Kremer S, Stewart J, Tayloer R, Vilo J, Vingron M (2001) Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat Genet 29:365–371

    PubMed  CAS  Google Scholar 

  • Bruneau JM, Magnin T, Tagat E, Legrand R, Bernard M, Diaquin M, Fudali C, Latgé J-P (2001) Proteome analysis of Aspergillus fumigatus identifies glycosylphosphatidylinositol-anchored proteins associated to the cell wall biosynthesis. Electrophoresis 22:2812–2823

    PubMed  CAS  Google Scholar 

  • Bruneau JM, Maillet I, Tagat E, Legrand R, Supatto F, Fudali C, Le Caer JP, Labas V, Lecaque D, Hodgson J (2003) Drug induced proteome changes in Candida albicans: comparison of the effect of :(1, 3) glucan synthase inhibitors and two triazoles, fluconazole and itraconazole. Proteomics 3:325–336

    PubMed  CAS  Google Scholar 

  • Burré J, Beckhaus T, Schägger H, Corvey C, Hofmann S, Karas M, Zimmermann H, Volknandt W (2006) Analysis of the synaptic vesicle proteome using three gel-based protein separation techniques. Proteomics 6:6250–6262

    PubMed  Google Scholar 

  • Candiano G, Bruschi M, Musante L, Santuci L, Ghiggeri GM, Carnemolla B, Orecchia P, Zardi L, Righetti PG (2004) Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis 25:1327–1333

    PubMed  CAS  Google Scholar 

  • Carberry S, Neville CM, Kavanagh KA, Doyle S (2006) Analysis of major intracellular proteins of Aspergillus fumigatus by MALDI mass spectrometry: Identification and characterisation of an elongation factor 1B protein with glutathione transferase activity. Biochem Biophys Res Commun 341:1096–1104

    PubMed  CAS  Google Scholar 

  • Carrette O, Burkhard PR, Sanchez J-C, Hochstrasser DF (2006) State-of-the-art two-dimensional gel electrophoresis: a key tool of proteomics research. Nat Protoc 1:812–823

    PubMed  CAS  Google Scholar 

  • Cho A, Normile D (2002) Nobel prize in chemistry: mastering macromolecules. Science 298:527–528

    PubMed  Google Scholar 

  • Choi W, Yoo YJ, Kim M, Shin D, Jeon HB, Choi W (2003) Identification of proteins highly expressed in the hyphae of Candida albicans by two-dimensional electrophoresis. Yeast 20:1053–1060

    PubMed  CAS  Google Scholar 

  • Chou H, Lin WL, Tam MF, Wang SR, Han SH, Shen HD (1999) Alkaline serine proteinase is a major allergen of Aspergillus flavus, a prevalent airborne Aspergillus species in the Taipei area. Int Arch Allergy Immunol 119:282–290

    PubMed  CAS  Google Scholar 

  • Cobitz AR, Yim EH, Brown WR, Perou CM, Tamanoi F (1989) Phosphorylation of RAS1 and RAS2 proteins in Saccharomyces cerevisiae. Proc Natl Acad Sci 86:858–862

    PubMed  CAS  Google Scholar 

  • Colina AR, Aumont F, Deslauriers N, Belhumeur P, De Repentigny L (1996) Evidence for degradation of gastrointestinal mucin by Candida albicans secretory aspartyl proteinase. Infect Immun 64:4514–4519

    PubMed  CAS  Google Scholar 

  • Crowe JD, Sievwright IK, Auld GC, Moore NR, Gow NAR, Booth NA (2003) Candida albicans binds human plasminogen: identification of eight plasminogen-binding proteins. Mol Microbiol 47:1637–1651

    PubMed  CAS  Google Scholar 

  • Damerval C, Devienne D, Zivy M, Thiellement H (1986) Technical improvements in two-dimensional electrophoresis increase the level of genetic variation detected in wheat-seedling proteins. Electrophoresis 7:52–54

    CAS  Google Scholar 

  • Da Silva Ferreira ME, Kress MR, Savoldi M, Goldman MH, Hartl A, Heinekamp T, Brakhage AA, Goldman GH (2006a) The akuB(KU80) mutant deficient for nonhomologous end joining is a powerful tool for analyzing pathogenicity in Aspergillus fumigatus. Eukaryot Cell 5:207–211

    PubMed  Google Scholar 

  • Da Silva Ferreira ME, Malavazi I, Savoldi M, Brakhage AA, Goldman MH, Kim HS, Nierman WC, Goldman GH (2006b) Transcriptome analysis of Aspergillus fumigatus exposed to voriconazole. Curr Genet 50:32–44

    PubMed  Google Scholar 

  • David H, Hofmann G, Oliveira AP, Jarmer H, Nielsen J (2006) Metabolic network driven analysis of genome-wide transcription data from Aspergillus nidulans. Genome Biol 7:R108

    PubMed  Google Scholar 

  • De Backer J, De Hoogt RA, Froyen G, Odds FC, Simons F, Contreras R, Luyten WHM (2000a) Single allele knock-out of Candida albicans CGT1 leads to unexpected resistance to hygromycin B and elevated temperature. Microbiology 146:353–365

    PubMed  CAS  Google Scholar 

  • De Backer MD, Magee PT, Pla J (2000b) Recent developments in molecular genetics of Candida albicans. Annu Rev Microbiol 54:463–498

    PubMed  CAS  Google Scholar 

  • De Godoy LFM, Olsen JV, De Souza GA, Li G, Mortensen P, Mann M (2006) Status of complete proteome analysis by mass spectrometry: SILAC labeled yeast as model system. Genome Biol 7:R50

    PubMed  Google Scholar 

  • De Groot PWJ, De Boer AD, Cunningham J, Dekker HL, De Jong L, Hellingwerf KJ, De Koster C, Klis FM (2004) Proteomic analysis of Candida albicans cell walls reveals covalently bound carbohydrate-active enzymes and adhesins. Eukaryot Cell 3:955–965

    PubMed  CAS  Google Scholar 

  • De Groot PW, Ram AF, Klis FM (2005) Features and functions of covalently linked proteins in fungal cell walls. Fungal Genet Biol 42:657–675

    PubMed  CAS  Google Scholar 

  • De Hoog CL, Mann M (2004) Proteomics. Annu Rev Genomics Hum Genet 5:267–293

    PubMed  CAS  Google Scholar 

  • Delom F, Szponarski W, Sommerei N, Boyer JC, Bruneau JM, Rossignol M, Gibrat R (2006) The plasma membrane proteome of Saccharomyces cerevisiae and its response to the antifungal calcofluor. Proteomics 6:3029–3039

    PubMed  CAS  Google Scholar 

  • De Repentigny L, Kilanowski E, Pedneault L, Boushira M (1991) Immunoblot analyses of the serologic response to Aspergillus fumigatus antigens in experimental invasive aspergillosis. J Infect Dis 163:1305–1311

    PubMed  CAS  Google Scholar 

  • Domon B, Aebersold R (2006) Mass spectrometry and protein analysis. Science 312:212–217

    PubMed  CAS  Google Scholar 

  • Ebanks RO, Chisholm K, McKinnon S, Whiteway M, Pinto DM (2006) Proteomic analysis of Candida albicans yeast and hyphal cell wall and associated proteins. Proteomics 6:2147–2156

    PubMed  CAS  Google Scholar 

  • Elias JE, Gygi SP (2007) Target–decoy search strategy for increased confidence in large-scale protein identification by mass spectrometry. Nat Methods 4:207–214

    PubMed  CAS  Google Scholar 

  • Elias JE, Hass W, Faherty BK, Gygi SP (2005) Comparative evaluation of mass spectrometry platforms used in large-scale proteomics investigations. Nat Methods 2:667–675

    PubMed  CAS  Google Scholar 

  • Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM (1989) Electrospray ionisation for the mass spectrometry of large biomolecules. Science 246:64–71

    PubMed  CAS  Google Scholar 

  • Fernández-Arenas E, Molero G, Nombela C, Diez-Orejas R, Gil C (2004a) Contribution of the antibodies response induced by a low virulent Candida albicans strain in protection against systemic candidiasis. Proteomics 4:1204–1215

    PubMed  Google Scholar 

  • Fernández-Arenas E, Molero G, Nombela C, Diez-Orejas R, Gil C (2004b) Low virulent strains of Candida albicans: unravelling the antigens for a future vaccine. Proteomics 4:3007–3020

    PubMed  Google Scholar 

  • Fernández-Arenas E, Cabezón V, Bermejo C, Arroyo J, Nombela C, Diez-Orejas R, Gil C (2007) Integrated proteomic and genomic strategies bring new insight into Candida albicans response upon macrophage interaction. Mol Cell Proteomics 6:460–478

    PubMed  Google Scholar 

  • Ficarro SB, McCleland ML, Stukenberg PT, Burke DJ, Ross MM, Shabanowitz J, Hunt DF, White FM (2002) Phosphoproteome analysis by mass spectrometry and its application to S. cerevisiae. Nat Biotechnol 20:301–305

    PubMed  CAS  Google Scholar 

  • Fountoulakis M, Takács B (2001) Effect of strong detergents and chaotropes on the detection of proteins in two-dimensional gels. Electrophoresis 22: 1593–1602

    PubMed  CAS  Google Scholar 

  • Futcher B, Latter GI, Monardo P, McLaughlin CS, Garrels JI (1999) A sampling of the yeast proteome. Mol Cell Biol 19:7357–7368

    PubMed  CAS  Google Scholar 

  • Galagan JE et al (2005) Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature 438:1105–1115

    PubMed  CAS  Google Scholar 

  • Ge H, Walhout AJM, Vidal M (2003) Integrating ‘omic’ information: a bridge between genomics and systems biology. Trends Genet 19:551–560

    PubMed  CAS  Google Scholar 

  • Ghannoum MA, Spellberg B, Saporito-Irwin SM, Fonzi WA (1995) Reduced virulence of Candida albicans PHR1 mutants. Infect Immun 63:4528–4530

    PubMed  CAS  Google Scholar 

  • Görg A, Obermaier C, Boguth G, Harder A (2000) The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 21: 1037–1053

    PubMed  Google Scholar 

  • Görg A, Weiss W, Dunn MJ (2004) Current two-dimensional electrophoresis technology for proteomics. Proteomics 4:3665–3685

    PubMed  Google Scholar 

  • Griffin TJ, Gygi SP, Ideker T, Rist B, Eng J, Hood L, Aebersold R (2002) Complementary profiling of gene expression at the transcriptome and proteome levels in Saccharomyces cerevisiae. Mol Cell Proteomics 1:323–333

    PubMed  CAS  Google Scholar 

  • Gruhler A, Olsen JV, Mohammed S, Mortensen P, Faergeman NJ, Mann M, Jensen ON (2005) Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway. Mol Cell Proteomics 4:310–327

    PubMed  CAS  Google Scholar 

  • Guthke R, Kniemeyer O, Albrecht D, Brakhage AA, Moeller U (2007) Discovery of gene regulatory networks in Aspergillus fumigatus. Lect N Bioinf 4366:22–41

    Google Scholar 

  • Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17:994–999

    PubMed  CAS  Google Scholar 

  • Harder A, Wildgruber R, Nawrocki A, Fey SJ, Larsen PM, Görg A (1999) Comparison of yeast cell protein solubilisation procedures for two-dimensional electrophoresis. Electrophoresis 20:826–829

    PubMed  CAS  Google Scholar 

  • Hayes RN, Gross ML (1990) Collision-induced dissociation. Methods Enzymol 193:237–263

    PubMed  CAS  Google Scholar 

  • Henningsen R, Gale BL, Straub KM, DeNagel DC (2002) Application of zwitterionic detergents to the solubilization of integral membrane proteins for two-dimensional gel electrophoresis and mass spectrometry. Proteomics 2:1479–1488

    PubMed  CAS  Google Scholar 

  • Hermjakob H (2006) The HUPO proteomics standards initiative–overcoming the fragmentation of proteomics data. Pract Proteomics 1/2:34–38

    CAS  Google Scholar 

  • Hernández R, Nombela C, Diez-Orejas R, Gil C (2004) Two-dimensional reference map of Candida albicans hyphal forms. Proteomics 4:374–382

    PubMed  Google Scholar 

  • Hooshdaran MZ, Barker KS, Hilliard GM, Kusch H, Morschhäuser J, Rogers PD (2004) Proteomic analysis of azole resistance in Candida albicans clinical isolates. Antimicrob Agents Chemother 48:2733–2735

    PubMed  CAS  Google Scholar 

  • Hsiang T, Baillie DL (2006) Issues in comparative fungal genomics. In: Arora DK, Berka R, Singh GB (eds) Bioinformatics. (Applied mycology and biotechnology, vol 6) Elsevier, Amsterdam, pp 1–26

    Google Scholar 

  • Hube B (2006) Infection-associated genes of Candida albicans. Future Microbiol 1:209–218

    PubMed  CAS  Google Scholar 

  • Hufnagel P, Rabus R (2006) Mass spectrometric identification of proteins in complex post-genomic projects. J Mol Microbiol Biotechnol 11:53–81

    PubMed  CAS  Google Scholar 

  • Hunt DF, Yates JR III, Shabanowitz J, Winston S, Hauer CR (1986) Protein sequencing by tandem mass spectrometry. Proc Natl Acad Sci USA 83:6233–6237

    PubMed  CAS  Google Scholar 

  • Hunt SMN, Thomas MR, Sebastian LT, Pedersen SK, Harcourt RL, Sloane AJ, Wilkins MR (2005) Optimal replication and the importance of experimental design for gel-based quantitative proteomics. J Proteome Res 4:809–819

    PubMed  CAS  Google Scholar 

  • Hunter T (2000) Signaling-2000 and beyond. Cell 100:113–127

    PubMed  CAS  Google Scholar 

  • Ideker T, Galitski T, Hood L (2001) A new approach to decoding life: systems biology. Annu Rev Genomics Hum Genet 2:343–372

    PubMed  CAS  Google Scholar 

  • Insenser M, Nombela C, Molero G, Gil C (2006) Proteomic analysis of detergent-resistant membranes from Candida albicans. Proteomics 6:S74–S81

    PubMed  Google Scholar 

  • Isaacson T, Damasceno CMB, Saravanan RS, He Y, Catalá C, Saladié M, Rose JKC (2006) Sample extraction techniques for enhanced proteomic analysis of plant tissues. Nat Protoc 1:769–774

    PubMed  CAS  Google Scholar 

  • Ishihama Y, Oda Y, Tabata T, Sato T, Nagasu T, Rappsilber J, Mann M (2005) Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol Cell Proteomics 4:1265–1272

    PubMed  CAS  Google Scholar 

  • Jones T, Federspiel NA, Chibana H, Dungan J, Kalman S, Magee BB, Newport G, Thorstenson YR, Agabian N, Magee PT, Davis RW, Scherer S (2004) The diploid genome sequence of Candida albicans. Proc Natl Acad Sci 101:7329–7334

    PubMed  CAS  Google Scholar 

  • Kang C, Kim HJ, Kang D, Jung DY, Suh M (2003) Highly sensitive and simple fluorescence staining of proteins in sodium dodecyl sulfate–polyacrylamide-based gels by using hydrophobic tail-mediated enhancement of fluorescein luminescence. Electrophoresis 24: 3297–3304

    PubMed  CAS  Google Scholar 

  • Kang D, Gho YS, Su M, Kang C (2002) Highly sensitive and fast protein detection with Coomassie brilliant blue in sodium dodecyl sulfate–polyacrylamide gel electrophoresis. 23:1511–1512

    Google Scholar 

  • Karas M, Hillenkamp F (1988) Laser desorption ionisation of proteins with molecular mass exceeding 100, 00 daltons. Anal Chem 60:2299–2301

    PubMed  CAS  Google Scholar 

  • Kaufmann H, Bailey JE, Fussenegger M (2001) Use of antibodies for detection of phosphorylated proteins separated by two-dimensional gel electrophoresis. Proteomics 1:194–199

    PubMed  CAS  Google Scholar 

  • Kim Y, Nandakumar MP, Marten MR (2007) Proteome map of Aspergillus nidulans during osmoadaptation. Fungal Genet Biol 44:886–895

    PubMed  CAS  Google Scholar 

  • Kinoshita E, Kinoshita-Kikuta E, Takiyama K, Koike T (2006) Phosphate-binding tag, a new tool to visualise phosphorylated proteins. Mol Cell Proteomics 5:749–757

    PubMed  CAS  Google Scholar 

  • Kinoshita-Kikuta E, Kinoshita E, Yamada A, Endo M, Koike T (2006) Enrichment of phosphorylated proteins from cell lysate using a novel phosphate-affinity chromatography at physiological pH. Proteomics 6:5088–5095

    PubMed  CAS  Google Scholar 

  • Klose J (1975) Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissue: a novel approach to testing for induced point mutations in mammals. Humangenetik 26:231–243

    PubMed  CAS  Google Scholar 

  • Klose J, Kobalz U (1995) Two-dimensional electrophoresis of proteins: an updated protocol and implications for a functional analysis of the genome. Electrophoresis 16:1034–1059

    PubMed  CAS  Google Scholar 

  • Kniemeyer O, Lessing F, Scheibner O, Hertweck C, Brakhage AA (2006) Optimisation of a 2-D gel electrophoresis protocol for the human-pathogenic fungus Aspergilllus fumigatus. Curr Genet 49:178–189

    PubMed  CAS  Google Scholar 

  • Knowles MR, Cervino S, Skynner HA et al (2003) Multiplex proteomics analysis by two-dimensional differential in-gel electrophoresis. Proteomics 3:1162–1171

    PubMed  CAS  Google Scholar 

  • Kolkman A, Dirksen EHC, Slijper M, Heck AJR (2005) Double standards in quantitative proteomics. Mol. Cell Proteomics 4:255–266

    PubMed  CAS  Google Scholar 

  • Kontoyiannis DP, Lewis RE (2002) Antifungal drug resistance of pathogenic fungi. Lancet 359:1135–1144

    PubMed  CAS  Google Scholar 

  • Kramer ML (2006) A new multiphasic buffer system for benzyldimethyl-n-hexadecylammonium chloride polyacrylamide gel electrophoresis of proteins providing efficient stacking. Electrophoresis 27:347–356

    PubMed  CAS  Google Scholar 

  • Krappmann S, Sasse C, Braus GH (2006) Gene targeting in Aspergillus fumigatus by homologous recombination is facilitated in a nonhomologous end- joining-deficient genetic background. Eukaryot Cell 5:212–215

    PubMed  CAS  Google Scholar 

  • Kusch H, Engelmann S, Albrecht D, Morschhäuser J, Hecker M (2007a) Proteomic analysis of the oxidative stress response in Candida albicans. Proteomics 7:686–697

    PubMed  CAS  Google Scholar 

  • Kusch H, Engelmann S, Bode R, Albrecht D, Morschhäuser J, Hecker M (2007b) A proteomic view of Candida albicans yeast cell metabolism in exponential and stationary growth phases. Int J Med Microbiol 298: 291–318

    PubMed  Google Scholar 

  • Kussmann M, Nordhoff E, Rahbek-Nielsen H, Haebel S, Rossel-Larsen M, Jakobsen L, Gobom J, Mirgorodskaya E, Kroll Kristensen A, Palm L, Roepstorff (1997) MALDI-MS sample preparation techniques designed for various peptide and protein analytes. J Mass Spectrom 32:593–601

    CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 227:680–685

    PubMed  CAS  Google Scholar 

  • Lai HY, Tam MF, Tang RB, Chou H, Chang CY, Tsai JJ, Shen HD (2002) cDNA cloning and immunological characterization of a newly identified enolase allergen from Penicillium citrinum and Aspergillus fumigatus. Int Arch Allergy Immunol 127:181–190

    PubMed  CAS  Google Scholar 

  • Langfelder K, Jahn B, Gehringer H, Schmidt A, Wanner G, Brakhage AA (1998) Identification of a polyketide synthase gene (pksP) of Aspergillus fumigatus involved in conidial pigment biosynthesis and virulence. Med Microbiol Immunol 187:79–89

    PubMed  CAS  Google Scholar 

  • Latgé JP (2001) The pathobiology of Aspergillus fumigatus. Trends Microbiol 9:382–389

    PubMed  Google Scholar 

  • Latgé JP, Mouyna I, Tekaia F, Beauvais A, Debeaupuis JP, Nierman W (2005) Specific molecular features in the organisation and biosynthesis of the cell wall of Aspergillus fumigatus. Med Mycol 43:S15–S22

    PubMed  Google Scholar 

  • Leitner A, Lindner W (2006) Chemistry meets proteomics: The use of chemical tagging reactions for MS-based proteomics. Proteomics 6:5418–5434

    PubMed  CAS  Google Scholar 

  • Lessing F, Kniemeyer O, Wozniok I, Loeffler J, Kurzai O, Haertl A, Brakhage AA (2007) The Aspergillus fumigatus transcriptional regulator AfYap1 represents the major regulator for defense against reactive oxygen intermediates but is dispensable for pathogenicity in an intranasal mouse model. Eukaryot Cell 6:2290–2302

    PubMed  CAS  Google Scholar 

  • Lilley KS, Friedman (2004) All about DIGE: quantification technology for differential-display 2D-gel proteomics. Expert Rev Proteomics 1:401–409

    PubMed  CAS  Google Scholar 

  • Link AJ, Eng J, Schieltz DM, Carmack E, Mize GJ, Morris DR, Garvik BM, Yates JR III (1999) Direct analysis of protein complexes using mass spectrometry. Nat Biotechnol 17:676–682

    PubMed  CAS  Google Scholar 

  • López-Medrano R, Ovejero MC, Calera JA, Puente P, Leal F (1995) Aspergillus fumigatus antigens. Microbiology 141:2699–2704

    PubMed  Google Scholar 

  • Luche S, Santoni V, Rabilloud T (2003) Evaluation of nonionic and zwitterionic detergents as membrane protein solubilizers in two-dimensional electrophoresis. Proteomics 3:249–253

    PubMed  CAS  Google Scholar 

  • Macfarlane DE (1989) Two dimensional benzyldimethyl-n-hexadecylammonium chloride - sodium dodecyl sulfate preparative polyacrylamide gel electrophoresis: a high capacity high resolution technique for the purification of proteins from complex mixtures Anal Biochem 176:457–463

    PubMed  CAS  Google Scholar 

  • Mackintosh JA, Choi HY, Bae SH et al (2003) A fluorescent natural product for ultrasensitive detection of proteins in one-dimensional and two-dimensional gel electrophoresis. Proteomics 3:2273–2288

    PubMed  CAS  Google Scholar 

  • Magee BB, Magee PT (2005) Recent advances in the genomic analysis of Candida albicans. Rev Iberoam Micol 22:187–193

    PubMed  Google Scholar 

  • Mann M (2006) Functional and quantitative proteomics using SILAC. Nat Rev Mol Cell Biol 7:952–958

    PubMed  CAS  Google Scholar 

  • Mann M, Jensen ON (2003) Proteomic analysis of post-translational modifications. Nat Biotechnol 21:255–261

    PubMed  CAS  Google Scholar 

  • Manning M, Mitchell TG (1980a) Anaylsis of cytoplasmic antigens of the yeast and mycelial phases of Candida albicans by two-dimensional electrophoresis. Infect Immun 30:484–495

    PubMed  CAS  Google Scholar 

  • Manning M, Mitchell TG (1980b) Morphogenesis of Candida albicans and cytoplasmic proteins associated with differences in morphology, strain, or temperature. J Bacteriol 144:258–273

    PubMed  CAS  Google Scholar 

  • Marr KA, Carter RA, Crippa F, Wald A, Corey L (2002) Epidemiology and outcome of mould infections in hematopoietic stem cell transplant recipients. Clin Infect Dis 34:909–917

    PubMed  Google Scholar 

  • Martin SW, Konopka JB (2004) Lipid raft polarization contributes to hyphal growth in Candida albicans. Eukaryot Cell 3:675–684

    PubMed  CAS  Google Scholar 

  • Martinez-Solano L, Nombela C, Molero G, Gil C (2006) Differential protein expression of murine macrophages upon interaction with Candida albicans. Proteomics 6:S133–S144

    PubMed  Google Scholar 

  • Masuoka J, Glee PM, Hazen KC (1998) Preparative isoelectric focusing and preparative electrophoresis of hydrophobic Candida albicans cell wall proteins with in-line transfer to polyvinylidene difluoride membranes for sequencing. Electrophoresis 19:675–678

    PubMed  CAS  Google Scholar 

  • McCormack AL, Schieltz DM, Goode B, Yang S, Barnes G, Drubin D, Yates JR III (1997) Direct analysis and identification of proteins in mixtures by LC/MS/MS and database searching at the low-femtomole level. Anal Chem 69:767–776

    PubMed  CAS  Google Scholar 

  • McLachlin DT, Chait BT (2001) Analyis of phosphorylated proteins and peptides by mass spectrometry. Curr Opin Chem Biol 5:591–602

    PubMed  CAS  Google Scholar 

  • McLean JA, Ruotolo BT, Gillig KJ, Russel DH (2005) Ion mobility-mass spectrometry: a new paradigm for proteomics. Int J Mass Spectrom 240:301–315

    CAS  Google Scholar 

  • Medina ML, Kiernan UA, Francisco WA (2004) Proteomic analysis of rutin-induced secreted proteins from Aspergillus flavus. Fungal Genet Biol 41:327–335

    PubMed  CAS  Google Scholar 

  • Melanson JE, Chisholm KA, Pinto DM (2006) Targeted comparative proteomics by liquid chromatography/matrix-assisted laser desorption/ionization triple-quadrupole mass spectrometry. Rapid Commun Mass Spectrom 20:904–910

    PubMed  CAS  Google Scholar 

  • Melin P, Schnürer J, Wagner EG (2002) Proteome analysis of Aspergillus nidulans reveals proteins associated with the response to the antibiotic concanamycin A, produced by Streptomyces species. Mol Genet Genomics 267:695–702

    PubMed  CAS  Google Scholar 

  • Miller I, Crawford J, Gianazza E (2006) Protein stains for proteomic applications: which, when, why? Proteomics 6:5385–5408

    PubMed  CAS  Google Scholar 

  • Mirgorodskaya E, Braeuer C, Fucini P, Lehrach H, Gobom J (2005) Nanoflow liquid chromatography coupled to matrix-assisted laser desorption/ionization mass spectrometry: sample preparation, data analysis, and application to the analysis of complex peptide mixtures. Proteomics 5:399–408

    PubMed  CAS  Google Scholar 

  • Miura K (2003) Imaging technologies for the detection of multiple stains in proteomics. Proteomics 3:1097–1108

    PubMed  CAS  Google Scholar 

  • Miyagi M, Rao KC (2007) Proteolytic 18O-Labelling strategies for quantitative proteomics. Mass Spectrom Rev 26:121–126

    PubMed  CAS  Google Scholar 

  • Molloy MP (2000) Two-dimensional electrophoresis of membrane proteins using immobilized pH gradients. Anal Biochem 280:1–10

    PubMed  CAS  Google Scholar 

  • Morandell S, Stasyk T, Grosstessner-Hain K, Roitinger E, Mechtler K, Bonn GK, Huber LA (2006) Phosphoproteomics strategies for the functional analysis of signal transduction. Proteomics 6:4047–4056

    PubMed  CAS  Google Scholar 

  • Mouyna I, Fontaine T, Vai M, Monod M, Fonzi WA, Diaquin M, Popolo L, Hartland RP, Latgé J-P (2000) Glycosylphosphatidylinositol-anchored glucanosyltransferases play an active role in the biosynthesis of the fungal cell wall. J Biol Chem 275:14882–14889

    PubMed  CAS  Google Scholar 

  • Mukherjee PK, Zhou G, Munyon R, Ghannoum MA (2005) Candida biofilm: a well-designed protected environment. Med Mycol 43:191–208

    PubMed  CAS  Google Scholar 

  • Mukherjee PK, Mohamed S, Chandra J, Kuhn D, Liu S, Antar OS, Munyon R, Mitchell AP, Andes D, Chance MR, Rouabhia M, Ghannoum MA (2006) Alcohol dehydrogenase restricts the ability of the pathogen Candida albicans to form a biofilm on catheter surfaces through an ethanol-based mechanism. Infect Immun 74:3804–3816

    PubMed  CAS  Google Scholar 

  • Murry PF, Biscoglio MJ, Passeron S (2000) Purification and characterization of 20S proteasome: identification of four proteasomal subunits. Arch Biochem Biophys 375:211–219

    Google Scholar 

  • Naglik J, Albrecht A, Bader O, Hube B (2004) Candida albicans proteinases and host/pathogen interactions. Cell Microbiol 6:915–926

    PubMed  CAS  Google Scholar 

  • Nandakumar MP, Marten MR (2002) Comparison of lysis methods and preparation protocols for one- and two-dimensional electrophoresis of Aspergillus oryzae intracellular proteins. Electrophoresis 23:2216–2222

    PubMed  CAS  Google Scholar 

  • Nandakumar MP, Shen J, Raman B, Marten MR (2003) Solubilization of TCA precipitated microbial proteins via NaOH for two-dimensional gel electrophoresis. J Proteome Res 2:89–93

    PubMed  CAS  Google Scholar 

  • Navarro-García F, Sánchez M, Nombela C, Pla J (2001) Virulence genes in the pathogenic yeast Candida albicans. FEMS Microbiol Rev 25:245–268

    PubMed  Google Scholar 

  • Neuhoff V, Arold N, Taube D, Ehrhardt W (1988) Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie brilliant blue G-250 and R-250. Electrophoresis 9:255–262

    PubMed  CAS  Google Scholar 

  • Nierman WC , Pain A, Anderson MJ, Wortman JR, Kim HS, Arroyo J, Berriman M, Abe K, Archer DB, Bermejo C, Bennett J, Bowyer P, Chen D, Collins M, Coulsen R, Davies R, Dyer PS, Farman M, Fedorova N, Fedorova N, Feldblyum TV, Fischer R, Fosker N, Fraser A, García JL, García MJ, Goble A, Goldman GH, Gomi K, Griffith-Jones S, Gwilliam R, Haas B, Haas H, Harris D, Horiuchi H, Huang J, Humphray S, Jiménez J, Keller N, Khouri H, Kitamoto K, Kobayashi T, Konzack S, Kulkarni R, Kumagai T, Lafon A, Latgé JP, Li W, Lord A, Lu C, Majoros WH, May GS, Miller BL, Mohamoud Y, Molina M, Monod M, Mouyna I, Mulligan S, Murphy L, O’Neil S, Paulsen I, Peñalva MA, Pertea M, Price C, Pritchard BL, Quail MA, Rabbinowitsch E, Rawlins N, Rajandream MA, Reichard U, Renauld H, Robson GD, Rodriguez de Córdoba S, Rodríguez-Peña JM, Ronning CM, Rutter S, Salzberg SL, Sanchez M, Sánchez-Ferrero JC, Saunders D, Seeger K, Squares R, Squares S, Takeuchi M, Tekaia F, Turner G, Vazquez de Aldana CR, Weidman J, White O, Woodward J, Yu JH, Fraser C, Galagan JE, Asai K, Machida M, Hall N, Barrell B, Denning DW (2005) Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature 438:1151–1156

    PubMed  CAS  Google Scholar 

  • Nigam S, Ghosh PC, Sarma PU (2002) A new glycoprotein allergen/antigen with the protease activity from Aspergillus fumigatus. Int Arch Allergy Immunol 132:124–131

    Google Scholar 

  • Niimi M, Shepherd MG, Monk BC (1996) Differential profiles of soluble proteins during the initiation of morphogenesis in Candida albicans. Arch Microbiol 166:260–268

    PubMed  CAS  Google Scholar 

  • Niimi M, Cannon RD, Monk BC (1999) Candida albicans pathogenicity: a proteomic perspective. Electrophoresis 20:2299–2308

    PubMed  CAS  Google Scholar 

  • O’Farrel PH (1975) High resolution two dimensional gel electrophoresis of proteins. J Biol Chem 250:4007–4021

    Google Scholar 

  • Oda K, Kakizono D Yamada O, Iefuji H, Akita O, Iwashita K (2006) Proteomic analysis of extracellular proteins from Aspergillus oryzae grown under submerged and solid-state culture conditions. Appl Environ Microbiol 72:3448–3457

    PubMed  CAS  Google Scholar 

  • Odds FC, Brown AJP, Gow NAR (2003) Antifungal agents: mechanisms of action. Trends Microbiol 11:272–279

    PubMed  CAS  Google Scholar 

  • Odds FC, Gow NAR, Brown AJP (2001) Fungal virulence studies come of age. Genome Biol 2:1009.1–1009.4

    Google Scholar 

  • Odds FC, Gow NAR, Brown AJP (2006) Towards a molecular understanding of Candida albicans virulence. In: Heitman J et al (eds) Molecular principles of fungal pathogenesis, ASM Press, Washington, D.C., pp 305–321

    Google Scholar 

  • Ong S-E, Mann M (2005) Mass spectrometry-based proteomics turns quantitative. Nat Chem Biol 1:252–262

    PubMed  CAS  Google Scholar 

  • Pandey A, Podtelejnikov AV, Blagoev B, Bustelo XR et al (2000) Analysis of receptor signaling pathways by mass spectrometry: identification of vav-2 as a substrate of the epidermal and platelet-derived growth factor receptors. Proc Natl Acad Sci USA 97:179–184

    PubMed  CAS  Google Scholar 

  • Pardo M, Ward M, Pitarch A, Sánchez M, Nombela C, Blackstock W, Gil C (2000) Cross-species identification of novel Candida albicans immunogenic proteins by combination of two-dimensional polyacrylamide gel electrophoresis and mass spectrometry. Electrophoresis 21:2651–2659

    PubMed  CAS  Google Scholar 

  • Patterson SD (2004) How much of the proteome do we see with discovery-based proteomics methods and how much do we need to see? Curr Proteomics 1:3–12

    CAS  Google Scholar 

  • Patterson SD, Aebersold RH (2003) Proteomics: the first decade and beyond. Nat Genet 33:311–323

    PubMed  CAS  Google Scholar 

  • Perlroth J, Choi B, Spellberg B (2007) Nosocomial fungal infections: epidemiology, diagnosis, and treatment. Med Mycol 45:321–346

    PubMed  Google Scholar 

  • Pfaller MA, Diekema DJ (2004) Rare and emerging opportunistic fungal pathogens: concern for resistance beyond Candida albicans and Aspergillus fumigatus. J Clin Microbiol 42:4419–4431

    PubMed  CAS  Google Scholar 

  • Phizicky E, Bastiaens PIH, Zhu H, Snyder M, Fields S (2003) Protein analysis on a proteomic scale. Nature 422:208–215

    PubMed  CAS  Google Scholar 

  • Pitarch A, Abian J, Carrascal M, Sánchez M, Nombela C, Gil C (2004) Proteomics-based identification of novel Candida albicans antigens for diagnosis of systemic candidiasis in patients with underlying hematological malignancies. Proteomics 4:3084–3106

    PubMed  CAS  Google Scholar 

  • Pitarch A, Diez-Orejas R, Molero G, Pardo M, Sánchez M, Gil C, Nombela C (2001) Analysis of the serologic response to systemic Candida albicans infection in a murine model. Proteomics 1:550–559

    PubMed  CAS  Google Scholar 

  • Pitarch A, Jiménez A, César Nombela, Gil C (2006a) Decoding serological response to Candida cell wall immunome into novel diagnostic, prognostic, and therapeutic candidates for systemic candidiasis by proteomic and bioinformatic analyses. Mol Cell Proteomics 5:79–96

    PubMed  CAS  Google Scholar 

  • Pitarch A, Molero G, Monteoliva L, Thomas DP, Lopez-Ribot JL, Nombela C, Gil C (2007) Proteomics in Candida species. In: d’Enfert C, Hube B (ed) Candida: comparative and functional genomics. Caister Academic, London, pp 169–194

    Google Scholar 

  • Pitarch A, Nombela C, Gil C (2006b) Candida biology and pathogenicity: insights from proteomics. In: Hecker M (ed) Microbial proteomics: functional biology of whole organisms. Wiley, Hoboken, pp 285–330

    Google Scholar 

  • Pitarch A, Nombela C, Gil C (2006c) Contribution of proteomics to diagnosis, treatment, and prevention of candidiasis. In: Hecker M (ed) Microbial proteomics: functional biology of whole organisms. Wiley, Hoboken, pp 285–330

    Google Scholar 

  • Pitarch A, Pardo M, Jimenéz A, Pla J, Gil C, Sánchez M, Nombela C (1999) Two-dimensional gel electrophoresis as analytical tool for identifying Candida albicans immunogenic proteins. Electrophoresis 20:1001–1010

    PubMed  CAS  Google Scholar 

  • Pitarch A, Sánchez M, Nombela C, Gil C (2002) Sequential fractionation and two-dimensional gel analysis unravels the complexity of the dimorphic fungus Candida albicans cell wall proteome. Mol Cell Proteomics 1:967–982

    PubMed  CAS  Google Scholar 

  • Pitarch A, Sanchez M, Nombela C, Gil C (2003) Analysis of the Candida albicans proteome I. Strategies and applications. J Chromatogr B 787:101–128

    CAS  Google Scholar 

  • Prokisch H, Scharfe C, Camp DG 2nd, Wenzhong X, David L, Andreoli C, Monroe ME, Moore RJ, Gritsenko MA, Kozany C, Hixson KK, Mottaz HM, Zischka H, Ueffing M, Herman ZS, Davis RW, Meitinger T, Oefner PJ, Smith RD, Steinmetz LM (2004) Integrative analysis of the mitochondrial proteome in yeast. PloS Biol 2:795–804

    CAS  Google Scholar 

  • Rabilloud T (1996) Solubilization of proteins for electrophoretic analyses. Electrophoresis 17:813–829

    PubMed  CAS  Google Scholar 

  • Rabilloud T, Carpentier G, Tarrox P (1988) Improvement and simplification of low-background silver staining of proteins by using sodium dithionite. Electrophoresis 9:288–291

    PubMed  CAS  Google Scholar 

  • Rais I, Karas M, Schägger H (2004) Two-dimensional electrophoresis for the isolation of integral membrane proteins and mass spectrometric identification. Proteomics 4:2567–2571

    PubMed  CAS  Google Scholar 

  • Raman B, Cheung A, Marten MR (2002) Quantitative comparison and evaluation of two commercially available, two-dimensional electrophoresis image analysis software packages, Z3 and Melanie. Electrophoresis 23:2194–2202

    PubMed  CAS  Google Scholar 

  • Reinders J, Sickmann A (2005) State-of-the-art in phosphoproteomics. Proteomics 5:4052–4061

    PubMed  CAS  Google Scholar 

  • Reinders J, Zahedi RP, Pfanner N, Meisinger C, Sickmann A (2006) Toward the complete yeast mitochondrial proteome: multidimensional separation techniques for mitochondrial proteomics. J Proteome Res 5:1543–1554

    PubMed  CAS  Google Scholar 

  • Rementeria A, López-Molina N, Ludwig A, Vivanco AB, Bikandi J, Pontón J, Garaizar J (2005) Genes and molecules involved in Aspergillus fumigatus virulence. Rev Iberoam Micol 22:1–23

    PubMed  Google Scholar 

  • Rhodes JC, Brakhage AA (2006) Molecular determinants of virulence in Aspergillus fumigatus. In: Heitman J et al (eds) Molecular principles of fungal pathogenesis. ASM Press, Washington, D.C., pp 333–345

    Google Scholar 

  • Richardson MD (2005) Changing patterns and trends in systemic fungal infections. J Antimicrob Chemother 56[Suppl S1]:i5–i11

    PubMed  CAS  Google Scholar 

  • Richardson MD, Warnock DW (2003) Fungal infections: diagnosis and management. Blackwell, Oxford

    Google Scholar 

  • Righetti PG, Campostrini N, Pascali J, Hamdan M, Astner H (2004) Quantitative proteomics: a review of different methodologies. Eur J Mass Spectrom 10:335–348

    CAS  Google Scholar 

  • Righetti PG, Castagna A, Antonioli P, Boschetti E (2005) Prefractionation techniques in proteome analysis: The mining tools of the third millenium. Electrophoresis 26:297–319

    PubMed  CAS  Google Scholar 

  • Rosengren AT, Salmi JM, Aittokallio T, Westerholm J, Lahesmaa R, Nyman TA, Nevalainen OS (2003) Comparisonn of PDQuest and Progenesis software packages in the analysis of two-dimensional electrophoresis gels. Proteomics 3:1936–1946

    PubMed  CAS  Google Scholar 

  • Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S, Purkayastha S, Juhasz P, Martin S, Bartlet-Jones M, He F, Jacobson A, Pappin DJ (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3:1154–1169

    PubMed  CAS  Google Scholar 

  • Ruiz-Herrera J (1992) Fungal cell wall: structure, synthesis and assembly. CRC Press, Boca Raton

    Google Scholar 

  • Rupp S (2004) Proteomics on its way to study host-pathogen interaction in Candida albicans. Curr Opin Microbiol 7:330–335

    PubMed  CAS  Google Scholar 

  • Sano A, Nakamura H (2004) Titania as a chemo-affinity support for the column-switching HPLC analysis of phosphopeptides: application to the characterization of phosphorylation sites in proteins by combination with protease digestion and electrospray ionization mass spectrometry. Anal Sci 20:861–864

    PubMed  CAS  Google Scholar 

  • Santoni V, Molloy M, Rabilloud T (2000) Membrane proteins and proteomics: un amour impossibile? Electrophoresis 21:1054–1070

    PubMed  CAS  Google Scholar 

  • Saporito-Irwin SM, Birse CE, Sypherd PS, Fonzi WA (1995) PHR1, a pH-regulated gene of Candida albicans, is required for morphogenesis. Mol Cell Biol 15:601–613

    PubMed  CAS  Google Scholar 

  • Saville SP, Thomas DP, López Ribot JL (2006) A role for Efg1p in Candida albicans interactions with extracellular matrices. FEMS Microbiol Lett 256:151–158

    PubMed  CAS  Google Scholar 

  • Schägger H (2006) Tricine-SDS-PAGE. Nat Protoc 1:16–22

    PubMed  Google Scholar 

  • Schägger H, Von Jagow G (1987) Tricine–sodium dodecyl sulfate polyacrylamide gel electrophoresis for the separation of proteins in the range from 1–100 kDalton. Anal Biochem 166:368–379

    PubMed  Google Scholar 

  • Schmidt A, Kellermann J, Lottspeich F (2005) A novel strategy for quantitative proteomics using isotope-coded protein labels. Proteomics 5:4–15

    PubMed  CAS  Google Scholar 

  • Schrettl M, Bignell E, Kragl C, Joechl C, Rogers T, Arst HN Jr, Haynes K, Hass H (2004) Siderophore biosynthesis but not reductive iron assimilation is essential for Aspergillus fumigatus virulence J Exp Med 200:1213–1219

    PubMed  CAS  Google Scholar 

  • Schulenberg B, Goodman TN, Aggeler R, Capaldi RA, Patton WF (2004) Characterization of dynamic and steady-state protein phosphorylation using a fluorescent phosphorylation gel stain and mass spectrometry. Electrophoresis 25:2526–2532

    PubMed  CAS  Google Scholar 

  • Schwienbacher M, Weig M, Thies S, Regula JT, Heesemann J, Ebel F (2005) Analysis of the major proteins secreted by the human opportunistic pathogen Aspergillus fumigatus under in vitro conditions. Med Mycol 43:623–630

    PubMed  CAS  Google Scholar 

  • Scott NL, Lecomte JTJ (2005) Protein structure: unusual covalent bonds. In: Nature encyclopedia of life sciences. Wiley, Chichester. http://www.els.net/ doi:10.1038/npg.els.0003015

  • Sentandreu M, Elorza MV, Sentandreu R, Fonzi WA (1998) Cloning and characterization of PRA1, a gene encoding a novel pH-regulated antigen of Candida albicans. J Bacteriol 180:282–289

    PubMed  CAS  Google Scholar 

  • Sepulveda P, Lopez-Ribot JL, Gozalbo D, Cervera A, Martinez JP, Chaffin WL (1996) Ubiquitin-like epitopes associated with Candida albicans cell surface receptors. Infect Immun 64:4406–4408

    PubMed  CAS  Google Scholar 

  • Shaw MM, Riederer BM, (2003) Sample preparation for two-dimensional gel electrophoresis. Proteomics 3:1408–1427

    PubMed  CAS  Google Scholar 

  • Shaw J, Rowlinson R, Nickson J, Stone T, Sweet A, Williams K, Tonge R (2003) Evaluation of saturation labelling two-dimensional difference gel electrophoresis fluorescent dyes. Proteomics 3:1181–1195

    PubMed  CAS  Google Scholar 

  • Sheir-Ness G, Lai MG, Morris NR (1978) Identification of a gene for S-tubulin in Aspergillus nidulans. Cell 15:639–647

    Google Scholar 

  • Shen HD, Choo KB, Lin WL, Lin RY, Han SH (1990) An improved scheme for the identification of antigens recognized by specific antibodies in two-dimensional gel electrophoresis and immunoblotting. Electrophoresis 11:878–882

    PubMed  CAS  Google Scholar 

  • Shen HD, Lin WL, Tam FM, Chou H, Wang CW, Tsai JJ, Wang SR, Han SH (2001) Identification of vacuolar serine proteinase as a major allergen of Aspergillus fumigatus by immunoblotting and N-terminal amino acid sequence analysis. Clin Exp Allergy 31:295–302

    PubMed  CAS  Google Scholar 

  • Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 68:850–858

    PubMed  CAS  Google Scholar 

  • Shevchenko A, Sunyaev S, Loboda A, Shevchenko A, Bork P, Ens W, Standing KW (2001) Charting the proteomes of organisms with unsequenced genomes by MALDI-quadrupole time-of-flight mass spectrometry and BLAST homology searching. Anal Chem 73:1917–1926

    PubMed  CAS  Google Scholar 

  • Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann M (2006) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1:2856–2860

    PubMed  CAS  Google Scholar 

  • Shimizu M, Wariishi H (2005) Development of a sample preparation method for fungal proteomics. FEMS Microbiol Lett 247:17–22

    PubMed  CAS  Google Scholar 

  • Shin DH, Jung S, Park SJ, Kim YJ, Ahn JM, Kim W, Choi W (2005a) Characterization of thiol-specific antioxidant 1 (TSA1) of Candida albicans. Yeast 22:907–918

    PubMed  CAS  Google Scholar 

  • Shin YK, Kim KY, Paik YK (2005b) Alterations of protein expression in macrophages in response to Candida albicans infection. Mol Cells 20:271–279

    PubMed  CAS  Google Scholar 

  • Shin YK, Lee HJ, Lee JS, Paik YK (2006) Proteomic analysis of mammalian basic proteins by liquid-based two-dimensional column chromatography. Proteomics 6:1143–1150

    PubMed  CAS  Google Scholar 

  • Sickmann A, Mreyen M, Meyer HE (2003a) Mass spectrometry–a key technology in proteom research. Adv Biochem Biotechnol 83:141–176

    CAS  Google Scholar 

  • Sickmann A, Reinders J, Wagner Y, Joppich C, Zahedi R, Meyer HE, Schönfisch B, Perschil I, Chacinska A, Guiard B, Rehling P, Pfanner N (2003b) The proteome of Saccharomyces cerevisiae mitochondria. Proc Natl Acad Sci USA 100:13207–13212

    PubMed  CAS  Google Scholar 

  • Silva JC, Gorenstein MV, Li G-Z, Vissers JPC, Geromanos SJ (2006) Absolute quantification of proteins by LCMSE. Mol Cell Proteomics 5:144–156

    PubMed  CAS  Google Scholar 

  • Simpson RJ (2003) Proteins and proteomics–a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y

    Google Scholar 

  • Simpson DC, Smith RD (2005) Combining capillary electrophoresis with mass spectrometry for applications in proteomics. Electrophoresis 26:1291–1305

    PubMed  CAS  Google Scholar 

  • Singleton DR, Masuoka J, Hazen KC (2001) Cloning and analysis of a Candida albicans gene that affects cell surface hydrophobicity. J Bacteriol 183:3582–3588

    PubMed  CAS  Google Scholar 

  • Smejkal GB (2004) The Coomassie chronicles: past, present and future perspectives in polyacrylamide gel staining. Expert Rev Proteomics 1:381–387

    PubMed  CAS  Google Scholar 

  • Sohn K, Roehm M, Urban C, Saunders N, Rothenstein D, Lottspeich F, Schröppel K, Brunner H, Rupp S (2005) Identification and characterization of Cor33p, a novel protein implicated in tolerance towards oxidative stress in Candida albicans. Eukaryot Cell 4:2160–2169

    PubMed  CAS  Google Scholar 

  • Sohn K, Schwenk J, Urban C, Lechner J, Schweikert M, Rupp S (2006) Getting in touch with Candida albicans: the cell wall of a fungal pathogen. Curr Drug Targets 7:505–512

    PubMed  CAS  Google Scholar 

  • Soloviev DA, Fonzi WA, Sentandreu R, Pluskota E, Forsyth CB, Yadav S, Plow EF (2007) Identification of pH-regulated antigen 1 released from Candida albicans as the major ligand for leukocyte integrin alphaMbeta2. J Immunol 178:2038–2046

    PubMed  CAS  Google Scholar 

  • Soskic V, Gorlach M, Poznanovic S, Boehmer FD, Godovac-Zimmermann J (1999) Functional proteomics analysis of signal transduction pathways of the platelet-derived growth factor beta receptor. Biochemistry 38:1757–1764

    PubMed  CAS  Google Scholar 

  • Stasyk T, Hellman U, Souchelnytskyi (2001) Optimising sample preparation for 2-D electrophoresis. Life Sci News 9:9–12

    Google Scholar 

  • Stensballe A, Andersen S, Jensen ON (2001) Characterization of phosphoproteins from electrophoretic gels by nanoscale Fe(III) affinity chromatography with off-line mass spectrometry analysis. Proteomics 1:207–222

    PubMed  CAS  Google Scholar 

  • Stoldt VR, Sonneborn A, Leuker CE, Ernst JF (1997) Efg1p, an essential regulator of morphogenesis of the human pathogen Candida albicans, is a member of a conserved class of bHLH proteins regulating morphogenetic processes in fungi. EMBO J 16:1982–1991

    PubMed  CAS  Google Scholar 

  • Sundstrom P (2002) Adhesion in Candida spp. Cell Microbiol 4:461–469

    PubMed  CAS  Google Scholar 

  • Sundstrom P (2006) Candida albicans hypha formation and virulence. In: Heitman J et al (ed) Molecular principles of fungal pathogenesis, ASM Press, Washington, D.C., pp 45–48

    Google Scholar 

  • Swain M, Ross NW (1995) A silver stain protocol for proteins yielding high resolution and transparent background in sodium dodecyl sulfate–polyacrylamide gels. Electrophoresis 16:948–951

    PubMed  CAS  Google Scholar 

  • Taylor CF (2006) Minimum reporting requirements for proteomics: a MIAPE primer. Pract Proteomics 1/2:39–44

    CAS  Google Scholar 

  • Tekaia F, Latgé JP (2005) Aspergillus fumigatus: saprophyte or pathogen? Curr Opin Microbiol 8:385–392

    PubMed  CAS  Google Scholar 

  • Thomas DP, Bachmann SP, Lopez-Ribot J (2006a) Proteomics for the analysis of the Candida albicans biofilm lifestyle. Proteomics 6:5795–5804

    PubMed  CAS  Google Scholar 

  • Thomas DP, Pitarch A, Monteoliva L, Gil C, Lopez-Ribot JL (2006b) Proteomics to study Candida albicans biology and pathogenicity. Infect Disord Drug Targets 6:335–341

    PubMed  CAS  Google Scholar 

  • Thomas DP, Viudes A, Monteagudo C, Lazzell AL, Saville SP, López-Ribot JL (2006c) A proteomic-based approach for the identification of Candida albicans protein components present in a subunit vaccine that protects agains disseminated candidiasis. Proteomics 6:6033–6041

    PubMed  CAS  Google Scholar 

  • Thompson A, Schäfer J, Kuhn K, Kienle S, Schwarz J, Schmidt G, Neumann T, Hamon C (2003) Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem 75:1895–1904

    PubMed  CAS  Google Scholar 

  • Tripathi G, Wiltshire C, Macaskill S, Tournu H, Budge S, Brown AJ (2002) Gcn4 co-ordinates morphogenetic and metabolic responses to amino acid starvation in Candida albicans. EMBO J 21:5448–5465

    PubMed  CAS  Google Scholar 

  • Urban C, Sohn K, Lottspeich F, Brunner H, Rupp S (2003) Identification of cell surface determinants in Candida albicans reveals Tsa1p, a protein differentially localized in the cell. FEBS Lett 533:228–235

    Google Scholar 

  • Urban C, Xiong X, Sohn K, Schröppel K. Brunner H, Ruff S (2005) The moonlighting protein Tsa1p is implicated in oxidative stress response and in cell wall biogenesis in Candida albicans. Mol Microbiol 57:1318–1341

    PubMed  CAS  Google Scholar 

  • Urfer W, Grzegorczyk M, Jung K (2006) Statistics for proteomics: a review of tools for analyzing expermental data. Pract Proteomics 1/2:48–55

    CAS  Google Scholar 

  • Vandewoude KH, Vogelaers D, Blot SI (2006) Aspergillosis in the ICU–the new 21st century problem? Med Mycol 44:S71–S76

    Google Scholar 

  • Vediyappan G, Chaffin WL (2006) Non-glucan attached proteins of Candida albicans biofilm formed on various surfaces. Mycopathologia 161:3–10

    PubMed  CAS  Google Scholar 

  • Vediyappan G, Bikandi J, Braley R, Chaffin WL (2000) Cell surface proteins of Candida albicans: preparation of extracts and improved detection. Electrophoresis 21:956–961

    PubMed  CAS  Google Scholar 

  • Vellucci VF, Gygax SE, Hostetter MK (2007) Involvement of Candida albicans pyruvate dehydrogenase complex protein X (Pdx1) in filamentation. Fungal Genet Biol 44:979–990

    PubMed  CAS  Google Scholar 

  • Wachtler V, Balasubramanian MK (2006) Yeast lipid rafts?-an emerging view. Trends Cell Biol 16:1–4

    PubMed  CAS  Google Scholar 

  • Wang G, Wells WW, Zeng W, Chou C-L, Shen R-F (2006) Label-free protein quantification using LC-coupled ion trap or FT mass spectrometry: reproducibility, linearity, and application with complex proteomes. J Proteome Res 5:1214–1223

    PubMed  CAS  Google Scholar 

  • Wang W, Scali M, Vignani R, Spadafora A, Sensi E, Mazzuca S, Cresti M (2003) Protein extraction for two-dimensional electrophoresis from olive leaf, a plant tissue containing high levels of interfering compounds. Electrophoresis 24:2369–2375

    PubMed  CAS  Google Scholar 

  • Washburn MP, Wolters D, Yates JR III (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19:242–247

    PubMed  CAS  Google Scholar 

  • Weatherbee JA, May GS, Gambino J, Morris NR (1985) Involvement of a particular species of beta-tubulin (beta3) in conidial development in Aspergillus nidulans. J Cell Biol 101:706–711

    PubMed  CAS  Google Scholar 

  • Wei J, Sun J, Yu W, Jones A, Oeller P, Keller M, Woodnutt G, Short JM (2005) Global proteome discovery using an online three-dimensional LC-MS/MS. J Proteome Res 4:801–808

    PubMed  CAS  Google Scholar 

  • Wessel D, Flügge UI (1984) A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem 138:141–143

    PubMed  CAS  Google Scholar 

  • Westermeier R (2006) Sensitive, quantitative, and fast modifications for Coomassie blue staining of polyacrylamide gels. Proteomics 6[Suppl 2]:61–64

    PubMed  Google Scholar 

  • Westermeier R, Naven T (2002) Proteomics in practice. Wiley-VCH, Weinheim

    Google Scholar 

  • Wheelock AM, Buckpitt AR (2005) Software-induced variance in two-dimensional gel electrophoresis image analysis. Electrophoresis 26:4508–4520

    PubMed  CAS  Google Scholar 

  • Wiener MC, Sachs JR, Deyanova EG, Yates NA (2004) Differential mass spectrometry: a label-free LC-MS method for finding significant differences in complex peptide and protein mixtures. Anal Chem 76:6085–6096

    PubMed  CAS  Google Scholar 

  • Wiese S, Reidegeld KA, Meyer HE, Warscheid B (2007) Protein labeling by iTRAQ: A new tool for quantitative mass spectrometry in proteome research. Proteomics 7:340–350

    PubMed  CAS  Google Scholar 

  • Wildgruber R, Harder A, Obermaier C, Boguth G, Weiss W, Fey SJ, Larsen PM, Görg A (2000) Towards higher resolution: two-dimensional electrophoresis of Saccharomyces cerevisiae proteins using overlapping narrow immobilized pH gradients. Electrophoresis 21:2610–2616

    PubMed  CAS  Google Scholar 

  • Wildgruber R, Reil G, Drews O, Parlar H, Görg A (2002) Web-based two-dimensional database of Saccharomyces cerevisiae proteins using immobilized pH gradients from pH 6 to pH 12 and matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Proteomics 2:727–732

    PubMed  CAS  Google Scholar 

  • Wilkins MR, Sanchez JR, Gooley AA, Appel RD, Humphery-Smith I, Hochstrasser DF, Williams KL (1995) Progress with proteome projects, why all proteins expressed by a genome should be identified and how to do it. Biotechnol Gen Eng Rev 13:19–50

    Google Scholar 

  • Wilkins MR, Appel RD, Van Eyk JE, Chung MCM, Görg A, Hecker M. Huber LA, Langen H, Link AJ, Paik YK, Patterson SD, Pennington SR, Rabilloud T, Simpson RJ, Weiss W, Dunn MJ (2006) Guidelines for the next 10 years of proteomics. Proteomics 6:4–8

    PubMed  CAS  Google Scholar 

  • Williams TI, Combs JC, Thakur AP, Strobel HJ, Lynn BC (2006) A novel Bicine running buffer system for doubled sodium dodecyl sulfate-polyacrylamide gel electrophoresis of membrane proteins. Electrophoresis 27:2984–2995

    PubMed  CAS  Google Scholar 

  • Wilm MS, Mann M (1996) Analytical properties of the nanoelectrospray ion source. Anal Chem 68:1–8

    PubMed  CAS  Google Scholar 

  • Wilm MS, Shevchenko A, Houthaeve T, Breit S, Schweigerer L, Fotsis T, Mann M (1996) Femtomole sequencing of proteins from polyacrylamide gels by nano-electrospray mass spectrometry. Nature 379:466–469

    PubMed  CAS  Google Scholar 

  • Winkler C, Denker K Wortelkamp S, Sickmann A (2007) Silver- and Coomassie-staining protocols: detection limits and compatibility with ESI MS. Electrophoresis 28:2095–2099

    PubMed  CAS  Google Scholar 

  • Wittig I, Braun HP, Schägger H (2006) Blue native PAGE. Nat Protoc 1:418–428

    PubMed  CAS  Google Scholar 

  • Wittmann-Liebold B, Graack H-R, Pohl T (2006) Two-dimensional gel electrophoresis as tool for proteomics studies in combination with protein identification by mass spectrometry. Proteomics 6:4688–4703

    PubMed  CAS  Google Scholar 

  • Wolschin F, Weckwerth W (2005) Combining metal oxide affinity chromatography (MOAC) and selective mass spectrometry for robust identification of in vivo protein phosphorylation. Plant Methods 1:9

    PubMed  Google Scholar 

  • Wu CC, Yates JR 3rd (2003) The application of mass spectrometry to membrane proteomics. Nat Biotechnol 21:262–267

    PubMed  CAS  Google Scholar 

  • Yamagata A, Kristensen DB, Takeda Y, Miyamoto Y, Okada K, Inamatsu M, Yoshizato K (2002) Mapping of phosphorylated proteins on two-dimensional polyacrylamide gels using protein phosphatase. Proteomics 2:1267–1276

    PubMed  CAS  Google Scholar 

  • Yan JX, Wait R, Berkelman T, Harr RA, Westbrook JA, Wheeler CH, Dunn MJ (2000) A modified silver staining protocol for visualization of proteins compatible with matrix-assisted laser desorption/ionization and electrospray ionization–mass spectrometry. Electrophoresis 21:3666–3672

    PubMed  CAS  Google Scholar 

  • Yan L, Zhang JD, Cao YB, Gao PH, Jiang YY (2007) Proteomic analysis reveals a metabolism shift in a laboratory fluconazole-resistant Candida albicans strain. J Proteome Res 6:2248–2256

    PubMed  CAS  Google Scholar 

  • Yates JR III, Gilchrist A, Howell KE, Bergeron JJM (2005) Proteomics of organelles and large cellular structures. Nat Rev Mol Cell Biol 6:702–714

    PubMed  CAS  Google Scholar 

  • Yeo SF, Wong B (2002) Current status of nonculture methods for diagnosis of invasive fungal infections. Clin Microbiol Rev 15:465–484

    PubMed  Google Scholar 

  • Yin Z, Stead D, Selway L, Walker J, Riba-Garcia I, McInerney T, Gaskell S, Oliver SG, Cash P, Brown AJ (2004) Proteomic response to amino acid starvation in Candida albicans and Saccharomyces cerevisiae. Proteomics 4:2425–2436

    PubMed  CAS  Google Scholar 

  • Yin QY, Groot PWJ de, Dekker HL, Jong L de, Klis FM, Koster CG d e (2005) Comprehensive proteomic analysis of Saccharomyces cerevisiae cell walls. J Biol Chem 280:20894–20901

    PubMed  CAS  Google Scholar 

  • Zahedi RP, Meisinger C, Sickmann A (2005) Two-dimensional benzyldimethyl-n-hexadecylammonium chloride/SDS-PAGE for membrane proteomics. Proteomics 5:3581–3588

    PubMed  CAS  Google Scholar 

  • Zhu H, Bilgin M, Snyder M (2003) Proteomics. Annu Rev Biochem 72:783–812

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kniemeyer, O., Brakhage, A.A. (2008). Proteomics and its Application to the Human-Pathogenic Fungi Aspergillus fumigatus and Candida albicans . In: Brakhage, A.A., Zipfel, P.F. (eds) Human and Animal Relationships. The Mycota, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79307-6_8

Download citation

Publish with us

Policies and ethics