Skip to main content

Physiology and Metabolic Requirements of Pathogenic Fungi

  • Chapter
Human and Animal Relationships

Part of the book series: The Mycota ((MYCOTA,volume 6))

This chapter mainly focuses on fungi which can grow, replicate and distribute without the urgent need for a mammalian host but which may, under certain conditions, cause severe invasive infections. A focus is given on Candida, Saccharomyces, Aspergillus, and Cryptococcus species. Because they are free-living, these micro-organisms have to be able to adapt rapidly to changing environmental conditions. The enzymatic toolbox of these fungi has to provide the ability for the de novo synthesis of all growth factors, the metabolism of various carbon and nitrogen sources, resistance against heat- and cold-shock, and resistance against osmotic stress.

Fungal infections, defined here as diseases caused by fungi (not only the acquisition or persistence), mostly require a suppressed host immune system. This immunosuppression can either be caused by drugs in transplant medicine or by illnesses like leukaemia, AIDS, and neutropenia. Nevertheless, these fungi have to be able to overcome or hide from the residual immune system. In this respect, Cryptococcus and Candida species may have adapted more specifically to life within a host compared to Aspergillus species. For example, Can. albicans is able to escape attack from the complement cascade by binding the complement regulators factor H and FHL-1 (Meri et al. 2002, 2004). In addition, environmental conditions such as contact with serum or a temperature shift to at least 37°C mediate a switch from yeast to hyphal growth. The hyphae have a much higher capacity to invade tissues and are attributed as a prerequisite for invasive infections. Cryptococcus neoformans is also able to form filaments under specific conditions, but filamentous growth is not required for infection rather than for the formation of basidiospores. However, genes involved in mating (e.g. STEA12) seem to play a role in capsule formation. This ability to form a polysaccharide capsule seems to create some advantages in growth within infected tissues and dissemination into the brain. In addition, particles from the capsule are released after phagocytosis by macrophages, which accumulate in vesicles and may cause macrophage dysfunction or even cell death (Steenbergen and Casadevall 2003). Although the ability for capsule formation is an important virulence factor, the capsule is not specifically formed during infection but also forms in the natural habitat, the soil, and may protect the fungus from desiccation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albrecht A, Felk A, Pichova I, Naglik JR, Schaller M, Groot P de, Maccalum D, Odds FC, Schäfer W, Klis F, Monod M, Hube B (2006) Glycosylphosphatidylinositol–anchored proteases of Candida albicans target proteins necessary for both cellular processes and host–pathogen interactions. J Biol Chem 281:688–694

    Article  PubMed  CAS  Google Scholar 

  • Alloush HM, Lopez–Ribot JL, Masten BJ, Chaffin WL (1997) 3–Phosphoglycerate kinase: a glycolytic enzyme protein present in the cell wall of Candida albicans. Microbiology 143:321–330

    Article  PubMed  CAS  Google Scholar 

  • Aoki S, Ito–Kuwa S, Nakamura K, Kato J, Ninomiya K, Vidotto V (1994) Extracellular proteolytic activity of Cryptococcus neoformans. Mycopathologia 128: 143–150

    Article  PubMed  CAS  Google Scholar 

  • Barelle CJ, Priest CL, MacCallum DM, Gow NA, Odds FC, Brown AJ (2006) Niche–specific regulation of central metabolic pathways in a fungal pathogen. Cell Microbiol 8:961–971

    Article  PubMed  CAS  Google Scholar 

  • Barrett AJ, Rawlings ND (1995) Families and clans of serine peptidases. Arch Biochem Biophys 318:247–250

    Article  PubMed  CAS  Google Scholar 

  • Beauvais A, Monod M, Debeaupuis JP, Diaquin M, Kobayashi H, Latgé JP (1997a) Biochemical and antigenic characterization of a new dipeptidyl–peptidase isolated from Aspergillus fumigatus. J Biol Chem 272:6238–6244

    Article  PubMed  CAS  Google Scholar 

  • Beauvais A, Monod M, Debeaupuis JP, Grouzmann E, Brakch N, Svab J, Hovanessian AG, Latgé JP (1997b) Dipeptidyl–peptidase IV secreted by Aspergillus fumigatus, a fungus pathogenic to humans. Infect Immun 65:3042–3047

    PubMed  CAS  Google Scholar 

  • Bernheimer AW, Linder R, Weinstein SA, Kim KS (1987) Isolation and characterization of a phospholipase B from venom of Collett’s snake, Pseudechis colletti. Toxicon 25:547–554

    Article  PubMed  CAS  Google Scholar 

  • Birch M, Robson G, Law D, Denning DW (1996) Evidence of multiple extracellular phospholipase activities of Aspergillus fumigatus. Infect Immun 64:751–755

    PubMed  CAS  Google Scholar 

  • Birch M, Denning DW, Robson GD (2004) Comparison of extracellular phospholipase activities in clinical and environmental Aspergillus fumigatus isolates. Med Mycol 42:81–86

    Article  PubMed  CAS  Google Scholar 

  • Borg–von Zepelin M, Beggah S, Boggian K, Sanglard D, Monod M (1998) The expression of the secreted aspartyl proteinases Sap4 to Sap6 from Candida albicans in murine macrophages. Mol Microbiol 28:543–554

    Article  PubMed  Google Scholar 

  • Brock M, Buckel W (2004) On the mechanism of action of the antifungal agent propionate. Eur J Biochem 271:3227–3241

    Article  PubMed  CAS  Google Scholar 

  • Brown JS, Aufauvre–Brown A, Brown J, Jennings JM, Arst H Jr, Holden DW (2000) Signature–tagged and directed mutagenesis identify PABA synthetase as essential for Aspergillus fumigatus pathogenicity. Mol Microbiol 36:1371–1380

    Article  PubMed  CAS  Google Scholar 

  • Brueske CH (1986) Proteolytic activity of a clinical isolate of Cryptococcus neoformans. J Clin Microbiol 23:631–633

    PubMed  CAS  Google Scholar 

  • Capobianco JO, Lerner CG, Goldman RC (1992) Application of a fluorogenic substrate in the assay of proteolytic activity and in the discovery of a potent inhibitor of Candida albicans aspartic proteinase. Anal Biochem 204:96–102

    Article  PubMed  CAS  Google Scholar 

  • Chen LC, Casadevall A (1999) Variants of a Cryptococcus neoformans strain elicit different inflammatory responses in mice. Clin Diagn Lab Immunol 6: 266–268

    PubMed  CAS  Google Scholar 

  • Chen LC, Blank ES, Casadevall A (1996) Extracellular proteinase activity of Cryptococcus neoformans. Clin Diagn Lab Immunol 3:570–574

    PubMed  CAS  Google Scholar 

  • Chen SC, Müller M, Zhou JZ, Wright LC, Sorrell TC (1997) Phospholipase activity in Cryptococcus neoformans: a new virulence factor? J Infect Dis 175:414–420

    Article  PubMed  CAS  Google Scholar 

  • Chen SC, Wright LC, Golding JC, Sorrell TC (2000) Purification and characterization of secretory phospholipase B, lysophospholipase and lysophospholipase/transacylase from a virulent strain of the pathogenic fungus Cryptococcus neoformans. Biochem J 347:431–439

    Article  PubMed  CAS  Google Scholar 

  • Cossins EA, Chen L (1997) Folates and one–carbon metabolism in plants and fungi. Phytochemistry 45:437–452

    Article  PubMed  CAS  Google Scholar 

  • Cox GM, McDade HC, Chen SC, Tucker SC, Gottfredsson M, Wright LC, Sorrell TC, Leidich SD, Casadevall A, Ghannoum MA, Perfect JR (2001) Extracellular phospholipase activity is a virulence factor for Cryptococcus neoformans. Mol Microbiol 39:166–175

    Article  PubMed  CAS  Google Scholar 

  • d’Enfert C, Diaquin M, Delit A, Wuscher N, Debeaupuis JP, Huerre M, Latgé JP (1996) Attenuated virulence of uridine–uracil auxotrophs of Aspergillus fumigatus. Infect Immun 64:4401–4405

    PubMed  Google Scholar 

  • d’Enfert C, Bonini BM, Zapella PD, Fontaine T, Silva AM da, Terenzi HF (1999) Neutral trehalases catalyse intracellular trehalose breakdown in the filamentous fungi Aspergillus nidulans and Neurospora crassa. Mol Microbiol 32:471–483

    Article  PubMed  Google Scholar 

  • Djordjevic JT, Del Poeta M, Sorrell TC, Turner KM, Wright LC (2005) Secretion of cryptococcal phospholipase B1 (PLB1) is regulated by a glycosylphosphatidylinositol (GPI) anchor. Biochem J 389:803–812

    Article  PubMed  CAS  Google Scholar 

  • Dolan JW, Bell AC, Hube B, Schaller M, Warner TF, Balish E (2004) Candida albicans PLD I activity is required for full virulence. Med Mycol 42:439–447

    Article  PubMed  CAS  Google Scholar 

  • Ebel F, Schwienbacher M, Beyer J, Heesemann J, Brakhage AA, Brock M (2006) Analysis of the regulation, expression, and localisation of the isocitrate lyase from Aspergillus fumigatus, a potential target for antifungal drug development. Fungal Genet Biol 43:476–489

    Article  PubMed  CAS  Google Scholar 

  • Felk A, Kretschmar M, Albrecht A, Schaller M, Beinhauer S, Nichterlein T, Sanglard D, Korting HC, Schäfer W, Hube B (2002) Candida albicans hyphal formation and the expression of the Efg1–regulated proteinases Sap4 to Sap6 are required for the invasion of parenchymal organs. Infect Immun 70:3689–3700

    Article  PubMed  CAS  Google Scholar 

  • Fillinger S, Chaveroche MK, Dijck P van, Vries R de, Ruijter G, Thevelein J, d’Enfert C (2001) Trehalose is required for the acquisition of tolerance to a variety of stresses in the filamentous fungus Aspergillus nidulans. Microbiology 147:1851–1862

    PubMed  CAS  Google Scholar 

  • Fradin C, Kretschmar M, Nichterlein T, Gaillardin C, d’Enfert C, Hube B (2003) Stage–specific gene expression of Candida albicans in human blood. Mol Microbiol 47:1523–1543

    Article  PubMed  CAS  Google Scholar 

  • Fradin C, De Groot P, MacCallum D, Schaller M, Klis F, Odds FC, Hube B (2005) Granulocytes govern the transcriptional response, morphology and proliferation of Candida albicans in human blood. Mol Microbiol 56:397–415

    Article  PubMed  CAS  Google Scholar 

  • Frosco M, Chase T Jr, Macmillan JD (1992) Purification and properties of the elastase from Aspergillus fumigatus. Infect Immun 60:728–734

    PubMed  CAS  Google Scholar 

  • Fuchs BB, Mylonakis E (2006) Using non–mammalian hosts to study fungal virulence and host defense. Curr Opin Microbiol 9:346–351

    Article  PubMed  CAS  Google Scholar 

  • Ghannoum MA (2000) Potential role of phospholipases in virulence and fungal pathogenesis. Clin Microbiol Rev 13:122–143

    Article  PubMed  CAS  Google Scholar 

  • Giddey K, Favre B, Quadroni M, Monod M (2007) Closely related dermatophyte species produce different patterns of secreted proteins. FEMS Microbiol Lett 267:95–101

    Article  PubMed  CAS  Google Scholar 

  • Gil–Navarro I, Gil ML, Casanova M, O’Connor JE, Martinez JP, Gozalbo D (1997) The glycolytic enzyme glyceraldehyde–3–phosphate dehydrogenase of Candida albicans is a surface antigen. J Bacteriol 179:4992–4999

    PubMed  Google Scholar 

  • Greenspan P, Mayer EP, Fowler SD (1985) Nile red: a selective fluorescent stain for intracellular lipid droplets. J Cell Biol 100:965–973

    Article  PubMed  CAS  Google Scholar 

  • Heung LJ, Kaiser AE, Luberto C, Del Poeta M (2005) The role and mechanism of diacylglycerol–protein kinase C1 signaling in melanogenesis by Cryptococcus neoformans. J Biol Chem 280:28547–28555

    Article  PubMed  CAS  Google Scholar 

  • Hube B, Naglik J (2001) Candida albicans proteinases: resolving the mystery of a gene family. Microbiology 147:1997–2005

    PubMed  CAS  Google Scholar 

  • Hube B, Monod M, Schofield DA, Brown AJ, Gow NA (1994) Expression of seven members of the gene family encoding secretory aspartyl proteinases in Candida albicans. Mol Microbiol 14:87–99

    Article  PubMed  CAS  Google Scholar 

  • Hube B, Sanglard D, Odds FC, Hess D, Monod M, Schäfer W, Brown AJ, Gow NA (1997) Disruption of each of the secreted aspartyl proteinase genes SAP1, SAP2, and SAP3 of Candida albicans attenuates virulence. Infect Immun 65:3529–3538

    PubMed  CAS  Google Scholar 

  • Hube B, Hess D, Baker CA, Schaller M, Schäfer W, Dolan JW (2001) The role and relevance of phospholipase D1 during growth and dimorphism of Candida albicans. Microbiology 147:879–889

    PubMed  CAS  Google Scholar 

  • Ibrahim AS, Mirbod F, Filler SG, Banno Y, Cole GT, Kitajima Y, Edwards JE Jr, Nozawa Y, Ghannoum MA (1995) Evidence implicating phospholipase as a virulence factor of Candida albicans. Infect Immun 63:1993–1998

    PubMed  CAS  Google Scholar 

  • Ibrahim–Granet O, Dubourdeau M, Latgé JP, Ave P, Huerre M, Brakhage AA, Brock M (2008) Methylcitrate synthase from Aspergillus fumigatus is essential for manifestation of invasive aspergillosis. Cell Microbiol 10:134–148

    PubMed  Google Scholar 

  • Jahn B, Boukhallouk F, Lotz J, Langfelder K, Wanner G, Brakhage AA (2000) Interaction of human phagocytes with pigmentless Aspergillus conidia. Infect Immun 68:3736–3739

    Article  PubMed  CAS  Google Scholar 

  • Jahn B, Langfelder K, Schneider U, Schindel C, Brakhage AA (2002) PKSP–dependent reduction of phagolysosome fusion and intracellular kill of Aspergillus fumigatus conidia by human monocyte–derived macrophages. Cell Microbiol 4:793–803

    Article  PubMed  CAS  Google Scholar 

  • Jaton–Ogay K, Paris S, Huerre M, Quadroni M, Falchetto R, Togni G, Latgé JP, Monod M (1994) Cloning and disruption of the gene encoding an extracellular metalloprotease of Aspergillus fumigatus. Mol Microbiol 14:917–928

    Article  PubMed  Google Scholar 

  • Kingsbury JM, Goldstein AL, McCusker JH (2006) Role of nitrogen and carbon transport, regulation, and metabolism genes for Saccharomyces cerevisiae survival in vivo. Eukaryot Cell 5:816–824

    Article  PubMed  CAS  Google Scholar 

  • Kirsch DR, Whitney RR (1991) Pathogenicity of Candida albicans auxotrophic mutants in experimental infections. Infect Immun 59:3297–3300

    PubMed  CAS  Google Scholar 

  • Knechtle P, Goyard S, Brachat S, Ibrahim–Granet O, d’Enfert C (2005) Phosphatidylinositol–dependent phospholipases C Plc2 and Plc3 of Candida albicans are dispensable for morphogenesis and host–pathogen interaction. Res Microbiol 156:822–829

    Article  PubMed  CAS  Google Scholar 

  • Kolattukudy PE, Lee JD, Rogers LM, Zimmerman P, Celeski S, Fox B, Stein B, Copelan EA (1993) Evidence for possible involvement of an elastolytic serine protease in aspergillosis. Infect Immun 61:2357–2368

    PubMed  CAS  Google Scholar 

  • Kunze D, Melzer I, Bennett D, Sanglard D, MacCallum D, NÖrskau J, Coleman DC, Odds FC, Schäfer W, Hube B (2005) Functional analysis of the phospholipase C gene CaPLC1 and two unusual phospholipase C genes, CaPLC2 and CaPLC3, of Candida albicans. Microbiology 151:3381–3394

    Article  PubMed  CAS  Google Scholar 

  • Kvaal C, Lachke SA, Srikantha T, Daniels K, McCoy J, Soll DR (1999) Misexpression of the opaque–phase–specific gene PEP1 (SAP1) in the white phase of Candida albicans confers increased virulence in a mouse model of cutaneous infection. Infect Immun 67:6652–6662

    PubMed  CAS  Google Scholar 

  • Langfelder K, Jahn B, Gehringer H, Schmidt A, Wanner G, Brakhage AA (1998) Identification of a polyketide synthase gene (pksP) of Aspergillus fumigatus involved in conidial pigment biosynthesis and virulence. Med Microbiol Immunol 187:79–89

    Article  PubMed  CAS  Google Scholar 

  • Larcher G, Bouchara JP, Annaix V, Symoens F, Chabasse D, Tronchin G (1992) Purification and characterization of a fibrinogenolytic serine proteinase from Aspergillus fumigatus culture filtrate. FEBS Lett 308:65–69

    Article  PubMed  CAS  Google Scholar 

  • Leidich SD, Ibrahim AS, Fu Y, Koul A, Jessup C, Vitullo J, Fonzi W, Mirbod F, Nakashima S, Nozawa Y, Ghannoum MA (1998) Cloning and disruption of caPLB1, a phospholipase B gene involved in the pathogenicity of Candida albicans. J Biol Chem 273:26078–26086

    Article  PubMed  CAS  Google Scholar 

  • Liebmann B, Mühleisen TW, Müller M, Hecht M, Weidner G, Braun A, Brock M, Brakhage AA (2004) Deletion of the Aspergillus fumigatus lysine biosynthesis gene lysF encoding homoaconitase leads to attenuated virulence in a low–dose mouse infection model of invasive aspergillosis. Arch Microbiol 181:378–383

    Article  PubMed  CAS  Google Scholar 

  • Lorenz MC, Fink GR (2001) The glyoxylate cycle is required for fungal virulence. Nature 412:83–86

    Article  PubMed  CAS  Google Scholar 

  • Lorenz MC, Fink GR (2002) Life and death in a macrophage: role of the glyoxylate cycle in virulence. Eukaryot Cell 1:657–662

    Article  PubMed  CAS  Google Scholar 

  • Lorenz MC, Bender JA, Fink GR (2004) Transcriptional response of Candida albicans upon internalization by macrophages. Eukaryot Cell 3:1076–1087

    Article  PubMed  CAS  Google Scholar 

  • Maerker C, Rohde M, Brakhage AA, Brock M (2005) Methylcitrate synthase from Aspergillus fumigatus. Propionyl–CoA affects polyketide synthesis, growth and morphology of conidia. FEBS J 272:3615–3630

    Article  PubMed  CAS  Google Scholar 

  • Mare L, Iatta R, Montagna MT, Luberto C, Del Poeta M (2005) APP1 transcription is regulated by inositol–phosphorylceramide synthase 1–diacylglycerol pathway and is controlled by ATF2 transcription factor in Cryptococcus neoformans. J Biol Chem 280:36055–36064

    Article  PubMed  CAS  Google Scholar 

  • Meri T, Hartmann A, Lenk D, Eck R, Würzner R, Hellwage J, Meri S, Zipfel PF (2002) The yeast Candida albicans binds complement regulators factor H and FHL–1. Infect Immun 70:5185–5192

    Article  PubMed  CAS  Google Scholar 

  • Meri T, Blom AM, Hartmann A, Lenk D, Meri S, Zipfel PF (2004) The hyphal and yeast forms of Candida albicans bind the complement regulator C4b–binding protein. Infect Immun 72:6633–6641

    Article  PubMed  CAS  Google Scholar 

  • Monod M, Togni G, Rahalison L, Frenk E (1991) Isolation and characterisation of an extracellular alkaline protease of Aspergillus fumigatus. J Med Microbiol 35:23–28

    Article  PubMed  CAS  Google Scholar 

  • Monod M, Paris S, Sanglard D, Jaton–Ogay K, Bille J, Latgé JP (1993a) Isolation and characterization of a secreted metalloprotease of Aspergillus fumigatus. Infect Immun 61:4099–4104

    PubMed  CAS  Google Scholar 

  • Monod M, Paris S, Sarfati J, Jaton–Ogay K, Ave P, Latgé JP (1993b) Virulence of alkaline protease–deficient mutants of Aspergillus fumigatus. FEMS Microbiol Lett 106:39–46

    Article  PubMed  CAS  Google Scholar 

  • Monod M, Hube B, Hess D, Sanglard D (1998) Differential regulation of SAP8 and SAP9, which encode two new members of the secreted aspartic proteinase family in Candida albicans. Microbiology 144:2731–2737

    Article  PubMed  CAS  Google Scholar 

  • Monod M, Capoccia S, Lechenne B, Zaugg C, Holdom M, Jousson O (2002) Secreted proteases from pathogenic fungi. Int J Med Microbiol 292:405–419

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee PK, Seshan KR, Leidich SD, Chandra J, Cole GT, Ghannoum MA (2001) Reintroduction of the PLB1 gene into Candida albicans restores virulence in vivo. Microbiology 147:2585–2597

    PubMed  CAS  Google Scholar 

  • Müller HE, Sethi KK (1972) Proteolytic activity of Cryptococcus neoformans against human plasma proteins. Med Microbiol Immunol 158:129–134

    Article  PubMed  Google Scholar 

  • Naglik J, Challacombe S, Hube B (2003) Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiol Mol Biol Rev 67:400–428

    Article  PubMed  CAS  Google Scholar 

  • Naglik J, Albrecht A, Bader O, Hube B (2004) Candida albicans proteinases and host/pathogen interactions. Cell Microbiol 6:915–926

    Article  PubMed  CAS  Google Scholar 

  • Navarro–Martínez MD, Cabezas–Herrera J, Rodríguez–Lopez JN (2006) Antifolates as antimycotics? Connection between the folic acid cycle and the ergosterol biosynthesis pathway in Candida albicans. Int J Antimicrob Agents 28:560–567

    Article  PubMed  CAS  Google Scholar 

  • Noverr MC, Cox GM, Perfect JR, Huffnagle GB (2003) Role of PLB1 in pulmonary inflammation and cryptococcal eicosanoid production. Infect Immun 71:1538–1547

    Article  PubMed  CAS  Google Scholar 

  • Pendreno Y, Gonzalez–Parraga P, Conesa S, Martinez–Esperaza M, Aguinaga A, Hernandez JA, Arguelles JC (2006) The cellular resistance against oxidative stress (H2O2) is independent of neutral trehalase (Ntc1p) activity in Candida albicans. FEMS Yeast Res 6:57–62

    Article  PubMed  CAS  Google Scholar 

  • Petzold EW, Himmelreich U, Mylonakis E, Rude T, Toffaletti D, Cox GM, Miller JL, Perfect JR (2006) Characterization and regulation of the trehalose synthesis pathway and its importance in the pathogenicity of Cryptococcus neoformans. Infect Immun 74:5877–5887

    Article  PubMed  CAS  Google Scholar 

  • Price MF, Wilkinson ID, Gentry LO (1982) Plate method for detection of phospholipase activity in Candida albicans. Sabouraudia 20:7–14

    PubMed  CAS  Google Scholar 

  • Rawlings ND, Morton FR, Barrett AJ (2006) MEROPS: the peptidase database. Nucleic Acids Res 34:D270–D272

    Article  PubMed  CAS  Google Scholar 

  • Reichard U (1998) The significance of secretory and structure–associated proteases of Aspergillus fumigatus for the pathogenesis of invasive aspergillosis. Mycoses 41[Suppl 1]:78–82

    Article  PubMed  CAS  Google Scholar 

  • Reichard U, Büttner S, Eiffert H, Staib F, Rüchel R (1990) Purification and characterisation of an extracellular serine proteinase from Aspergillus fumigatus and its detection in tissue. J Med Microbiol 33:243–251

    Article  PubMed  CAS  Google Scholar 

  • Reichard U, Eiffert H, Rüchel R (1994) Purification and characterization of an extracellular aspartic proteinase from Aspergillus fumigatus. J Med Vet Mycol 32:427–436

    Article  PubMed  CAS  Google Scholar 

  • Reichard U, Monod M, Rüchel R (1995) Molecular cloning and sequencing of the gene encoding an extracellular aspartic proteinase from Aspergillus fumigatus. FEMS Microbiol Lett 130:69–74

    PubMed  CAS  Google Scholar 

  • Reichard U, Monod M, Rüchel R (1996) Expression pattern of aspartic proteinase antigens in aspergilli. Mycoses 39:99–101

    Article  PubMed  CAS  Google Scholar 

  • Reichard U, Monod M, Odds F, Rüchel R (1997) Virulence of an aspergillopepsin–deficient mutant of Aspergillus fumigatus and evidence for another aspartic proteinase linked to the fungal cell wall. J Med Vet Mycol 35:189–196

    Article  PubMed  CAS  Google Scholar 

  • Reichard U, Cole GT, Rüchel R, Monod M (2000) Molecular cloning and targeted deletion of PEP2 which encodes a novel aspartic proteinase from Aspergillus fumigatus. Int J Med Microbiol 290:85–96

    PubMed  CAS  Google Scholar 

  • Reichard U, Lechenne B, Asif AR, Streit F, Grouzmann E, Jousson O, Monod M (2006) Sedolisins, a new class of secreted proteases from Aspergillus fumigatus with endoprotease or tripeptidyl–peptidase activity at acidic pHs. Appl Environ Microbiol 72:1739–1748

    Article  PubMed  CAS  Google Scholar 

  • Rementeria A, Lopez–Molina N, Ludwig A, Vivanco AB, Bikandi J, Ponton J, Graizar J (2005) Genes and molecules involved in Aspergillus fumigatus virulence. Rev Iberoam Micol 22:1–23

    Article  PubMed  Google Scholar 

  • Rodrigues ML, dos Reis FC, Puccia R, Travassos LR, Alviano CS (2003) Cleavage of human fibronectin and other basement membrane–associated proteins by a Cryptococcus neoformans serine proteinase. Microb Pathol 34:65–71

    Article  CAS  Google Scholar 

  • Rude TH, Toffaletti DL, Cox GM, Perfect JR (2002) Relationship of the glyoxylate pathway to the pathogenesis of Cryptococcus neoformans. Infect Immun 70:5684–5694

    Article  PubMed  CAS  Google Scholar 

  • Ruma–Haynes P, Brownlee AG, Sorrell TC (2000) A rapid method for detecting extracellular proteinase activity in Cryptococcus neoformans and a survey of 63 isolates. J Med Microbiol 49:733–737

    PubMed  Google Scholar 

  • Sandhu DK, Sandhu RS, Khan ZU, Damodaran VN (1976) Conditional virulence of a p–aminobenzoic acid–requiring mutant of Aspergillus fumigatus. Infect Immun 13:527–532

    PubMed  CAS  Google Scholar 

  • Sanglard D, Hube B, Monod M, Odds FC, Gow NA (1997) A triple deletion of the secreted aspartyl proteinase genes SAP4, SAP5, and SAP6 of Candida albicans causes attenuated virulence. Infect Immun 65:3539–3546

    PubMed  CAS  Google Scholar 

  • Santangelo R, Zoellner H, Sorrell T, Wilson C, Donald C, Djordjevic J, Shounan Y, Wright L (2004) Role of extracellular phospholipases and mononuclear phagocytes in dissemination of cryptococcosis in a murine model. Infect Immun 72:2229–2239

    Article  PubMed  CAS  Google Scholar 

  • Schaller M, Korting HC, Schäfer W, Bastert J, Chen W, Hube B (1999) Secreted aspartic proteinase (Sap) activity contributes to tissue damage in a model of human oral candidosis. Mol Microbiol 34:169–180

    Article  PubMed  CAS  Google Scholar 

  • Schaller M, Bein M, Korting HC, Baur S, Hamm G, Monod M, Beinhauer S, Hube B (2003) The secreted aspartyl proteinases Sap1 and Sap2 cause tissue damage in an in vitro model of vaginal candidiasis based on reconstituted human vaginal epithelium. Infect Immun 71:3227–3234

    Article  PubMed  CAS  Google Scholar 

  • SchÖbel F, Ibrahim–Granet O, Ave P, Latgé JP, Brakhage AA, Brock M (2007) Aspergillus fumigatus does not require fatty acid metabolism via isocitrate lyase for development of invasive aspergillosis. Infect Immun 75:1237–1244

    Article  PubMed  CAS  Google Scholar 

  • Shea JM, Kechichian TB, Luberto C, Del Poeta M (2006) The cryptococcal enzyme inositol phosphosphingolipid–phospholipase C confers resistance to the antifungal effects of macrophages and promotes fungal dissemination to the central nervous system. Infect Immun 74:5977–5988

    Article  PubMed  CAS  Google Scholar 

  • Shen DK, Noodeh AD, Kazemi A, Grillot R, Robson G, Brugere JF (2004) Characterisation and expression of phospholipases B from the opportunistic fungus Aspergillus fumigatus. FEMS Microbiol Lett 239:87–93

    Article  PubMed  CAS  Google Scholar 

  • Shiloah J, Klibansky C, Vries A de, Berger A (1973) Phospholipase B activity of a purified phospholipase A from Vipera palestinae venom. J Lipid Res 14:267–278

    PubMed  CAS  Google Scholar 

  • Siafakas AR, Wright LC, Sorrell TC, Djordjevic JT (2006) Lipid rafts in Cryptococcus neoformans concentrate the virulence determinants phospholipase B1 and Cu/Zn superoxide dismutase. Eukaryot Cell 5:488–498

    Article  PubMed  CAS  Google Scholar 

  • Siezen RJ, Leunissen JA (1997) Subtilases: the superfamily of subtilisin–like serine proteases. Protein Sci 6:501–523

    Article  PubMed  CAS  Google Scholar 

  • Staib F (1965) Serum–proteins as nitrogen source for yeastlike fungi. Sabouraudia 4:187–193

    PubMed  CAS  Google Scholar 

  • Steenbergen JN, Casadevall A (2003) The origin and maintenance of virulence for the human pathogenic fungus Cryptococcus neoformans. Microbes Infect 5:667–675

    Article  PubMed  Google Scholar 

  • Takasaki C, Tamiya N (1982) Isolation and properties of lysophospholipases from the venom of an Australian elapid snake, Pseudechis australis. Biochem J 203:269–276

    PubMed  CAS  Google Scholar 

  • Tang CM, Cohen J, Holden DW (1992) An Aspergillus fumigatus alkaline protease mutant constructed by gene disruption is deficient in extracellular elastase activity. Mol Microbiol 6:1663–1671

    Article  PubMed  CAS  Google Scholar 

  • Tang CM, Cohen J, Krausz T, Van Noorden S, Holden DW (1993) The alkaline protease of Aspergillus fumigatus is not a virulence determinant in two murine models of invasive pulmonary aspergillosis. Infect Immun 61:1650–1656

    PubMed  CAS  Google Scholar 

  • Tang CM, Smith JM, Arst HN Jr, Holden DW (1994) Virulence studies of Aspergillus nidulans mutants requiring lysine or p–aminobenzoic acid in invasive pulmonary aspergillosis. Infect Immun 62:5255–5260

    PubMed  CAS  Google Scholar 

  • Taylor BN, Hannemann H, Sehnal M, Biesemeier A, Schweizer A, Rollinghoff M, SchrÖppel K (2005) Induction of SAP7 correlates with virulence in an intravenous infection model of candidiasis but not in a vaginal infection model in mice. Infect Immun 73:7061–7063

    Article  PubMed  CAS  Google Scholar 

  • Tsitsigiannis DI, Bok JW, Andes D, Nielsen KF, Frisvad JC, Keller NP (2005) Aspergillus cyclooxygenase–like enzymes are associated with prostaglandin production and virulence. Infect Immun 73:4548–4559

    Article  PubMed  CAS  Google Scholar 

  • Vidotto V, Sinicco A, Di Fraia D, Cardaropoli S, Aoki S, Ito–Kuwa S (1996) Phospholipase activity in Cryptococcus neoformans. Mycopathologia 136:119–123

    Article  PubMed  CAS  Google Scholar 

  • Vidotto V, Melhem M, Pukinskas S, Aoki S, Carrara C, Pugliese A (2005) Extracellular enzymatic activity and serotype of Cryptococcus neoformans strains isolated from AIDS patients in Brazil. Rev Iberoam Micol 22:29–33

    Article  PubMed  Google Scholar 

  • White TC, Agabian N (1995) Candida albicans secreted aspartyl proteinases: isoenzyme pattern is determined by cell type, and levels are determined by environmental factors. J Bacteriol 177:5215–5221

    PubMed  CAS  Google Scholar 

  • Wright LC, Santangelo RM, Ganendren R, Payne J, Djordjevic JT, Sorrell TC (2007) Cryptococcal lipid metabolism: phospholipase B1 is implicated in transcellular metabolism of macrophage–derived lipids. Eukaryot Cell 6:37–47

    Article  PubMed  CAS  Google Scholar 

  • Yoo Ji J, Lee YS, Song CY, Kim BS (2004) Purification and characterization of a 43–kilodalton extracellular serine proteinase from Cryptococcus neoformans. J Clin Microbiol 42:722–726

    Article  PubMed  CAS  Google Scholar 

  • Zhang YQ, Brock M, Keller NP (2004) Connection of propionyl–CoA metabolism to polyketide biosynthesis in Aspergillus nidulans. Genetics 168: 785–794

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brock, M. (2008). Physiology and Metabolic Requirements of Pathogenic Fungi. In: Brakhage, A.A., Zipfel, P.F. (eds) Human and Animal Relationships. The Mycota, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79307-6_4

Download citation

Publish with us

Policies and ethics