Advertisement

Entomopathogenic Fungi: Biochemistry and Molecular Biology

  • George G. Khachatourians
  • Sohail S. Qazi
Part of the The Mycota book series (MYCOTA, volume 6)

Entomopathogenic fungi (EPF) have become a significant force in shaping the larger context of insecticides within contemporary insect pest management schemes (Lord 2005; Roy et al., 2006; Khachatourians 2008). Needless to say, as mycologists we need the perspective and understanding to explain the diversity of EPF and their spatial and temporal distribution within the insect ecosystem. In the past decade, the accelerated focus of research and scholarly studies has generated two perspectives: (a) the molecular biology, genomics and proteomics of EPF, and (b) the practical use of EPF in insect pest management schemes. Their value therefore is two-fold, first in the study of microbial pathogenicity and second in their application to the microbial control of phytophagous insects as much as biting and hematophagous insect pest populations. Altogether some 90 genera and 700 species are involved with entomopathogenicity, only a few members of the Entomophthorales and Hyphomycetes have been well studied. In the past decade, major new developments in the realm of application of the knowledge of EPF to insect pest management have been realized (Khachatourians 1996). New developments in genomic and molecular research and serious interest in commercialization of EPF for pest control have become the new drivers of understanding in the field, challenges that were forecasted to meet the promise of new biotechnology (Khachatourians 1986). With such knowledge, physiological manipulations, isolation of mutants with enhanced virulence, and construction of environmentally safe strains with limited persistence should be possible within the near future. This chapter primarily reviews the literature since 1995 on the biochemistry and molecular biology of EPF and their involvement in the disease of insects. Additional sources of information can be followed from Table 3.1.

Keywords

Entomopathogenic Fungus Beauveria Bassiana Metarhizium Anisopliae Aerial Conidium Fungus Beauveria Bassiana 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akbar W, Lord JC, Nechols JR, Howard RW (2004) Diatomaceous earth increases the efficacy of Beauveria bassiana against Tribolium castaneum larvae and increases conidia attachment. J Econ Entomol 97:273–280PubMedCrossRefGoogle Scholar
  2. Akbar W, Lord JC, Nechols JR, Loughin TM (2005) Efficacy of Beauveria bassiana for red flour beetle when applied with plant essential oils or in mineral oil and organosilicone carriers. J Econ Entomol 98:683–688PubMedCrossRefGoogle Scholar
  3. Alverson J (2003) Effects of mycotoxins, kojic acid and oxalic acid, on biological fitness of Lygus hesperus (Heteroptera: Miridae). J Invert Pathol 83:60–62CrossRefGoogle Scholar
  4. Alves SB, Rossi LS, Lopes RB, Tamai MA, Pereira RM (2002) Beauveria bassiana yeast phase on agar medium and its pathogenicity against Diatraea saccharalis (Lepidoptera: Crambidae) and Tetranychus urticae (Acari: Tetranychidae). J Invert Pathol 81:70–77CrossRefGoogle Scholar
  5. Amiri-Besheli B, Khambay B, Cameron S, Deadman ML, Butt TM (2000) Inter- and intra-specific variation in destruxin production by insect pathogenic Metarhizium spp., and its significance to pathogenesis. Mycol Res 104:447–452CrossRefGoogle Scholar
  6. Ansari MA, Vestergaard S, Tirry L, Moens M (2004) Selection of a highly virulent fungal isolate, Metarhizium anisopliae CLO 53, for controlling Hoplia philanthus. J Invert Pathol 85:89–96CrossRefGoogle Scholar
  7. Asaff A, Cerda-Garcia-Rojas C, Torre M de la (2005) Isolation of dipicolinic acid as an insecticidal toxin from Paecilomyces fumosoroseus. Appl Microbiol Biotechnol 68:542–547PubMedCrossRefGoogle Scholar
  8. Bagga S, Hu G, Screen SE, St Leger RJ (2004) Reconstructing the diversification of subtilisins in the pathogenic fungus Metarhizium anisopliae. Gene 324:159–169PubMedCrossRefGoogle Scholar
  9. Bailey AM, Kershaw MJ, Hunt BA, Paterson IC, Charnley AK, Reynolds SE, Clarkson JM (1996) Cloning and sequence analysis of an intron-containing domain from a peptide synthetase-encoding gene of the entomopathogenic fungus Metarhizium anisopliae. Gene 173:195–197PubMedCrossRefGoogle Scholar
  10. Bandani AR (2004) Effect of entomopathogenic fungus Tolypocladium species metabolite efrapeptin on Galleria mellonella agglutinin. Commun Agric Appl Biol Sci 69:165–169PubMedGoogle Scholar
  11. Bandani AR, Amiri B, Butt TM, Gordon-Weeks R (2001) Effects of efrapeptin and destruxin, metabolites of entomogenous fungi, on the hydrolytic activity of a vacuolar type ATPase identified on the brush border membrane vesicles of Galleria mellonella midgut and on plant membrane bound hydrolytic enzymes. Biochim Biophys Acta 1510:367–377PubMedCrossRefGoogle Scholar
  12. Baratto CM, Silva MV da, Santi L, Passaglia L, Schrank IS, Vainstein MH, Schrank A (2003) Expression and characterization of the 42 kDa chitinase of the biocontrol fungus Metarhizium anisopliae in Escherichia coli. Can J Microbiol 49:723–726PubMedCrossRefGoogle Scholar
  13. Baratto CM, Dutra V, Boldo JT, Leiria LB, Vainstein MH, Schrank A (2006) Isolation, characterization, and transcriptional analysis of the chitinase chi2 gene (DQ011663) from the biocontrol fungus Metarhizium anisopliae var. anisopliae. Curr Microbiol 53:217–221PubMedCrossRefGoogle Scholar
  14. Bidochka MJ, Hajek AE (1998) A nonpermissive entomophthoralean fungal infection increases activation of insect prophenoloxidase. J Invert Pathol 72:231–238CrossRefGoogle Scholar
  15. Bidochka MJ, Khachatourians GG (1988a) Regulation of extracellular protease in the entomopathogenic fungus Beauveria bassiana. Exp Mycol 12:161–168CrossRefGoogle Scholar
  16. Bidochka MJ, Khachatourians GG (1988b) N-acetyl-D-glucosamine-mediated regulation of extracellular protease in the entomopathogenic fungus Beauveria bassiana. Appl Environ Microbiol 54:2699–2704PubMedGoogle Scholar
  17. Bidochka MJ, Khachatourians GG (1991) The implication of metabolic acids produced by Beauveria bassiana in pathogenesis of the migratory grasshopper, Melanoplus sanguinipes. J Invert Pathol 58:106–117CrossRefGoogle Scholar
  18. Bidochka MJ, Khachatourians GG (1993) Oxalic acid hyperproduction in Beauveria bassiana mutants is related to a utilizable carbon source but not to virulence. J Invert Pathol 62:53–57CrossRefGoogle Scholar
  19. Bidochka MJ, Khachatourians GG (1994a) Protein hydrolysis in grasshoppers by entomopathogenic fungal proteases. J Invert Pathol 62:7–13CrossRefGoogle Scholar
  20. Bidochka MJ, Khachatourians GG (1994b) Effect of cuticular modification on their degradation by entomopathogenic fungal extracellular proteases. J Invert Pathol 64:26–32CrossRefGoogle Scholar
  21. Bidochka MJ, Melzer MJ (2000) Genetic polymorphisms in three subtilisin-like protease isoforms (Pr1A, Pr1B, and Pr1C) from Metarhizium strains. Can J Microbiol 46:1138–1144PubMedCrossRefGoogle Scholar
  22. Bidochka MJ, Small CL (2005) Phylogeography of Metarhizium, an insect pathogenic fungus. In: Vega FE, Blackwell M (eds) Insect–fungal associations: ecology and evolution. Oxford University Press, Oxford, pp 28–50Google Scholar
  23. Bidochka MJ, Low NH, Khachatourians GG (1990) Storage carbohydrates of the entomopathogenic fungus Beauveria bassiana. Appl Environ Microbiol 56:3186–3190PubMedGoogle Scholar
  24. Bidochka MJ, St Leger RJ, Joshi L, Roberts DW (1995) An inner cell wall protein (cwp1) from conidia of the entomopathogenic fungus Beauveria bassiana. Microbiology 141:1075–1080PubMedCrossRefGoogle Scholar
  25. Bidochka MJ, St Leger RJ, Stuart A, Gowanlock K (1999) Nuclear rDNA phylogeny in the fungal genus Verticillium and its relationship to insect and plant virulence, extracellular proteases and carbohydrases. Microbiology 145:955–963PubMedCrossRefGoogle Scholar
  26. Bidochka MJ, Menzies FV, Kamp AM (2002) Genetic groups of the insect-pathogenic fungus Beauveria bassiana are associated with habitat and thermal growth preferences. Arch Microbiol 178:531–537PubMedCrossRefGoogle Scholar
  27. Bogo MR, Vainstein MH, Aragao FJ, Rech E, Schrank A (1996) High frequency gene conversion among benomyl resistant transformants in the entomopathogenic fungus Metarhizium anisopliae. FEMS Microbiol Lett 142:123–127PubMedCrossRefGoogle Scholar
  28. Bogo MR, Rota CA, Pinto H Jr, Ocampos M, Correa CT, Vainstein MH, Schrank A (1998) A chitinase encoding gene (chit1 gene) from the entomopathogen Metarhizium anisopliae: isolation and characterization of genomic and full-length cDNA. Curr Microbiol 37:221–225PubMedCrossRefGoogle Scholar
  29. Boucias DG, Pendland JC (1991) The fungal cell wall and its involvement in the pathogenic process in insect hosts. In: Latge JP, Boucias DG (eds) Fungal cell wall and immune response. Springer, Heidelberg, pp 121–137Google Scholar
  30. Boucias DG, Pendland JC, Latge JP (1988) Nonspecific factors involved in attachment of entomopathogenic Deuteromycetes to host insect cuticle. Appl Environ Microbiol 54:1795–1805PubMedGoogle Scholar
  31. Bradfisch GA, Harmer SL (1990) Omega-conotoxin GVIA and nifedipine inhibit the depolarizing action of the fungal metabolite destruxin B on muscle from the tobacco budworm (Heliothis virescens). Toxicon 28:1249–1254PubMedCrossRefGoogle Scholar
  32. Braga GU, Destefano RH, Messias CL (1999) Oxygen consumption by Metarhizium anisopliae during germination and growth on different carbon sources. J Invert Pathol 74:112–119CrossRefGoogle Scholar
  33. Braga GU, Flint SD, Messias CL, Anderson AJ, Roberts DW (2001a) Effects of UVB irradiance on conidia and germinants of the entomopathogenic Hyphomycete Metarhizium anisopliae: a study of reciprocity and recovery. Photochem Photobiol 73:140–146PubMedCrossRefGoogle Scholar
  34. Braga GU, Flint SD, Miller CD, Anderson AJ, Roberts DW (2001b) Both solar UVA and UVB radiation impair conidial culturability and delay germination in the entomopathogenic fungus Metarhizium anisopliae. Photochem Photobiol 74:734–739PubMedCrossRefGoogle Scholar
  35. Braga GU, Rangel DE, Flint SD, Anderson AJ, Roberts DW (2006) Conidial pigmentation is important to tolerance against solar-simulated radiation in the entomopathogenic fungus Metarhizium anisopliae. Photochem Photobiol 82:418–422PubMedCrossRefGoogle Scholar
  36. Brownbridge M, Costa S, Jaronski ST (2001) Effects of in vitro passage of Beauveria bassiana on virulence to Bemisia argentifolii. J Invert Pathol 77:280–283CrossRefGoogle Scholar
  37. Calo L, Fornelli F, Nenna S, Tursi A, Caiaffa MF, Macchia L (2003) Beauvericin cytotoxicity to the invertebrate cell line SF-9. J Appl Genet 44:515–520PubMedGoogle Scholar
  38. Campos RA, Arruda W, Boldo JT, Silva MV da, Barros NM de, Azevedo JL de, Schrank A, Vainstein MH (2005) Boophilus microplus infection by Beauveria amorpha and Beauveria bassiana: SEM analysis and regulation of subtilisin-like proteases and chitinases. Curr Microbiol 50:257–261PubMedCrossRefGoogle Scholar
  39. Caragh Moore M, Cox RJ, Duffin GR, O’Hagan D (1998) Synthesis and evaluation of a putative acyl tetramic acid intermediate in tenellin biosynthesis in Beauveria bassiana. A new role for tyrosine. Tetrahedron 54:9195–9206CrossRefGoogle Scholar
  40. Carballo M (1998) Cosmopolites sordidus mortality with certain Beauveria bassiana formulations. Manejo Integrad Plagas 48:45–48Google Scholar
  41. Carruthers RI, Soper RS (1987) Fungal disease. In: Fuxa JR, Tanada Y (eds) Epizootiology of insect diseases. Wiley–Interscience, New York, pp 357–416Google Scholar
  42. Chandler D (2005) Understanding the evolution and function of entomopathogenic fungi. http://www2.warwick.ac.uk/fac/sci/hri2/about/staff/dchandler. Accessed 26 September 2005
  43. Chandler D, Davidson G, Pell JK, Ball BV, Shaw KE, Sunderland KD (2000) Fungal biocontrol of Acari. Biocontrol Sci Technol 10:357–384CrossRefGoogle Scholar
  44. Charnley AK (1997) Entomopathogenic fungi and their role in pest control. In: Wicklow DT, Soderstrom BE (eds) Environmental and microbial relationships. (Mycota IV) Springer, Heidelberg, pp 185–201Google Scholar
  45. Charnley AK, St Leger RJ (1991) The role of cuticle degrading enzymes in fungal pathogenesis in insects. In: Cole GT, Hoch HC (eds) The fungal spore and disease initiation in plants and animals. Plenum, New York, pp 267–286Google Scholar
  46. Chelico L, Khachatourians GG (2007) Isolation and characterization of nucleotide excision repair deficient mutants of the entomopathogenic fungus, Beauveria bassiana. J Invert Pathol (in press)Google Scholar
  47. Chelico L, Haughian JL, Woytowich AL, Khachatourians GG (2005) Quantification of ultraviolet-C irradiation induced cyclobutane pyrimidine dimers and their removal in Beauveria bassiana conidiospores. Mycologia 97:621–627PubMedCrossRefGoogle Scholar
  48. Chelico L, Haughian JL, Khachatourians GG (2006) Nucleotide excision repair and photoreactivation in the entomopathogenic fungi Beauveria bassiana, B. brongniartii, B. nivea, Metarhizium anisopliae, Paecilomyces farinosus, and Verticillium lecanii. J Appl Microbiol 100:964–972PubMedCrossRefGoogle Scholar
  49. Cho EM, Liu L, Farmerie W, Keyhani NO (2006a) EST analysis of cDNA libraries from the entomopathogenic fungus Beauveria (Cordyceps) bassiana. I. Evidence for stage-specific gene expression in aerial conidia, in vitro blastospores and submerged conidia. Microbiology 152:2843–2854PubMedCrossRefGoogle Scholar
  50. Cho EM, Boucias D, Keyhani NO (2006b) EST analysis of cDNA libraries from the entomopathogenic fungus Beauveria (Cordyceps) bassiana. II. Fungal cells sporulating on chitin and producing oosporein. Microbiology 152:2855–2864PubMedCrossRefGoogle Scholar
  51. Coates BS, Hellmich RL, Lewis LC (2002) Nuclear small subunit rRNA group I intron variation among Beauveria spp provide tools for strain identification and evidence of horizontal transfer. Curr Genet 41:414–424PubMedCrossRefGoogle Scholar
  52. Cristine CB, Staats C, Schrank A, Vainstein MH (2004) Distribution of chitinases in the entomopathogen Metarhizium anisopliae and the effect of N-acetylglucosamine in protein secretion. Curr Microbiol 48:102–107CrossRefGoogle Scholar
  53. Dalla Santa HS, Sousa NJ, Brand D, Dalla Santa OR, Pandey A, Sobotka M, Paca J, Soccol CR (2004) Conidia production of Beauveria sp. by solid-state fermentation for biocontrol of Ilex paraguariensis caterpillars. Folia Microbiol 49:418–22CrossRefGoogle Scholar
  54. Dean P, Richards EH, Edwards JP, Reynolds SE, Charnley AK (2004) Microbial infection causes the appearance of hemocytes with extreme spreading ability in monolayers of the tobacco hornworm Manduca sexta. Dev Comp Immunol 28:689–700PubMedCrossRefGoogle Scholar
  55. Deshpande MV (1999) Mycopesticide production by fermentation: potential and challenges. Crit Rev Microbiol 25:229–243PubMedCrossRefGoogle Scholar
  56. Devi KU, Sridevi V, Mohan CM, Padmavathi J (2005) Effect of high temperature and water stress on in vitro germination and growth in isolates of the entomopathogenic fungus Beauveria bassiana (Bals.) Vuillemin. J Invert Pathol 88:181–189CrossRefGoogle Scholar
  57. Dunlap CA, Biresaw G, Jackson MA (2005) Hydrophobic and electrostatic cell surface properties of blastospores of the entomopathogenic fungus Paecilomyces fumosoroseus. Colloids Surf B Biointerfaces 46:261–266PubMedCrossRefGoogle Scholar
  58. Entz SC, Johnson DL, Kawchuk LM (2005) Development of a PCR-based diagnostic assay for the specific detection of the entomopathogenic fungus Metarhizium anisopliae var. acridum. Mycol Res 109:1302–1312PubMedCrossRefGoogle Scholar
  59. Fang W, Zhang Y, Yang X, Wang Z, Pei Y (2002) Cloning and characterization of cuticle degrading enzyme CDEP-1 from Beauveria bassiana (in Chinese). Yi Chuan Xue Bao 29:278–282PubMedGoogle Scholar
  60. Fang W, Leng B, Xiao Y, Jin K, Ma J, Fan Y, Feng J, Yang X, Zhang Y, Pei Y (2005) Cloning of Beauveria bassiana chitinase gene Bbchit1 and its application to improve fungal strain virulence. Appl Environ Microbiol 71:363–370PubMedCrossRefGoogle Scholar
  61. Fargues J, Bon MC (2004) Influence of temperature preferences of two Paecilomyces fumosoroseus lineages on their co-infection pattern. J Invert Pathol 87:94–104Google Scholar
  62. Fargues J, Luz C (2000) Effects of fluctuating moisture and temperature regimes on the infection potential of Beauveria bassiana for Rhodnius prolixus. J Invert Pathol 75:202–211CrossRefGoogle Scholar
  63. Fargues J, Remaudiere G (1977) Considerations on the specificity of entomopathogenic fungi. Mycopathologia 62:31–37CrossRefGoogle Scholar
  64. Fargues J, Rougier M, Goujet R, Smits N, Coustere C, Itier B (1997) Inactivation of conidia of Paecilomyces fumosoroseus by near-ultraviolet (UVB and UVA) and visible radiation. J Invert Pathol 69:70–78CrossRefGoogle Scholar
  65. Fargues J, Smiths N, Viial C, Vey A, Vega F, Mercadier G, Quimby P (2002) Effect of liquid culture media on morphology, growth, propagule production, and pathogenic activity of the Hyphomycete, Metarhizium flavoviride. Mycopathologia 154:127–138PubMedCrossRefGoogle Scholar
  66. Feng M-G, Poprawski TJ, Khachatourians GG (1994) Production, formulation and application of the entomopathogenic fungus Beauveria bassiana for insect control. Biocontrol Sci Technol 4:3–34CrossRefGoogle Scholar
  67. Ferron P, Fargues J, Riba G (1991) Fungi as microbial insecticides against pests. In: Arora DK, Mukerji KG, Drouhet E (eds) Handbook of applied mycology: humans, animals and insects. Dekker, New York, pp 665–706Google Scholar
  68. Fornelli F, Minervini F, Logrieco A (2004) Cytotoxicity of fungal metabolites to lepidopteran (Spodoptera frugiperda) cell line (SF-9). J Invert Pathol 85:74–79CrossRefGoogle Scholar
  69. Freimoser FM, Screen S, Bagga S, Hu G, St Leger RJ (2003a) Expressed sequence tag (EST) analysis of two subspecies of Metarhizium anisopliae reveals a plethora of secreted proteins with potential activity in insect hosts. Microbiology 149:239–247PubMedCrossRefGoogle Scholar
  70. Freimoser FM, Screen S, Hu G, St Leger R (2003b) EST analysis of genes expressed by the zygomycete pathogen Conidiobolus coronatus during growth on insect cuticle. Microbiology 149:1893–1900PubMedCrossRefGoogle Scholar
  71. Freimoser FM, Hu G, St Leger RJ (2005) Variation in gene expression patterns as the insect pathogen Metarhizium anisopliae adapts to different host cuticles or nutrient deprivation in vitro. Microbiology 151:361–371PubMedCrossRefGoogle Scholar
  72. Fuxa JR (1991) Release and transport of entomopathogenic microorganisms. In: Morris LA, Strauss HS (eds) Risk assessment in genetic engineering. McGraw Hill, New York, pp 83–113Google Scholar
  73. Ganassi S, Moretti A, Bonvicini-Pagliai AM, Logrieco A, Sabatini MA (2002) Effects of beauvericin on Schizaphis graminum (Aphididae). J Invert Pathol 80:90–96CrossRefGoogle Scholar
  74. Ghikas DV, Kouvelis VN, Typas MA (2006) The complete mitochondrial genome of the entomopathogenic fungus Metarhizium anisopliae var. anisopliae: gene order and trn gene clusters reveal a common evolutionary course for all Sordariomycetes, while intergenic regions show variation. Arch Microbiol 85:393–401CrossRefGoogle Scholar
  75. Gillespie JP, Khachatourians GG (1992) Characterization of the Melanoplus sanguinipes hemolymph after infection with Beauveria bassiana or wounding. Comp Biochem Physiol 103B:455–463Google Scholar
  76. Gillespie JP, Kanost MR, Trenczek T (1997) Biological mediators of insect immunity. Annu Rev Entomol 42:611–643PubMedCrossRefGoogle Scholar
  77. Griesch J, Vilcinskas A (1998) Proteases released by entomopathogenic fungi impair phagocytic activity, attachment and spreading of plasmatocytes isolated from hemolymph of the greater wax moth Galleria mellonella. Biocontrol Sci Technol 8:517–531CrossRefGoogle Scholar
  78. Hajek AE, St Leger RJ (1994) Interactions between fungal pathogens and insect hosts. Annu Rev Entomol 39:293–322CrossRefGoogle Scholar
  79. Hallsworth JE, Magan N (1999) Water and temperature relations of growth of the entomogenous fungi Beauveria bassiana, Metarhizium anisopliae, and Paecilomyces farinosus. J Invert Pathol 74:261–266CrossRefGoogle Scholar
  80. Hayden T, Bidochka MJ, Khachatourians GG (1992) Virulence of several entomopathogenic fungi and host-passage strains of Paecilomyces farinosus toward the Blackberry-Cereal Aphid Sitobion fragariae. J Econ Entomol 85:58–64Google Scholar
  81. Hegedus DD, Khachatourians GG (1993a) Construction of cloned DNA probes for the specific detection of the entomopathogenic fungus Beauveria bassiana in grasshoppers. J Invert Pathol 62:233–240CrossRefGoogle Scholar
  82. Hegedus DD, Khachatourians GG (1993b) Identification of molecular variants in mitochondrial DNAs of members of the genera Beauveria, Verticillium, Paecilomyces, Tolypocladium and Metarhizium. Appl Environ Microbiol 59:4283–4288PubMedGoogle Scholar
  83. Hegedus DD, Khachatourians GG (1995) The impact of biotechnology on hyphomycetous fungal insect biocontrol agents. Biotechnol Adv 13:455–490PubMedCrossRefGoogle Scholar
  84. Hegedus DD, Khachatourians GG (1996a) Identification and differentiation of the entomopathogenic fungus Beauveria bassiana using polymerase chain reaction and single-strand conformation polymorphism analysis. J Invert Pathol 67:289–299CrossRefGoogle Scholar
  85. Hegedus DD, Khachatourians GG (1996b) Detection of the entomopathogenic fungus Beauveria bassiana within infected migratory grasshoppers (Melanoplus sanguinipes) using polymerase chain reaction and DNA probe. J Invert Pathol 67:21–27CrossRefGoogle Scholar
  86. Hegedus DD, Khachatourians GG (1996c) Identification and differentiation of the entomopathogenic fungus Beauveria bassiana using polymerase chain reaction and single strand conformation polymorphism analysis. J Invert Pathol 67:289–299CrossRefGoogle Scholar
  87. Hegedus DD, Khachatourians GG (1996d) The effect of temperature on the pathogenicity of heat sensitive mutants of the entomopathogenic fungus Beauveria bassiana toward the migratory grasshopper, Melanoplus sanguinipes. J Invert Pathol 68:160–165CrossRefGoogle Scholar
  88. Hegedus DD, Bidochka MJ, Khachatourians GG (1990) Chitin and chitin monomers for the production of Beauveria bassiana submerged conidia. Appl Microbiol Biotechnol 30:637–642Google Scholar
  89. Hegedus DD, MacPherson JM, Pfeifer TA, Khachatourians GG (1991) DNA sequence of tRNAVal-tRNAIle tandem genes from the mitochondria of the entomopathogenic fungus Beauveria bassiana GK2016. Gene 109:149–154PubMedCrossRefGoogle Scholar
  90. Hegedus DD, Bidochka MJ, Miranpuri GS, Khachatourians GG (1992) A comparison of the virulence, stability and cell-wall surface characteristics of three spore types produced by the entomopathogenic fungus Beauveria bassiana. Appl Microbiol Biotechnol 36:785–789CrossRefGoogle Scholar
  91. Hegedus DD, Pfeifer TA, Mulyk DS, Khachatourians GG (1998) Characterization and structure of the mitochondrial small rRNA gene of the entomopathogenic fungus Beauveria bassiana. Genome 41:471–476PubMedCrossRefGoogle Scholar
  92. Holder DJ, Keyhani NO (2005) Adhesion of the entomopathogenic fungus Beauveria (Cordyceps) bassiana to substrata. Appl Environ Microbiol 71:5260–5266PubMedCrossRefGoogle Scholar
  93. Hsiao WF, Bidochka MJ, Khachatourians GG (1992) Effect of temperature, relative humidity on the virulence of the entomopathogenic fungus Verticillium lecanii toward the oat-bird berry aphid Rhopalosiphum padi. (Homoptera: Aphididae). J Appl Entomol 114:484–490CrossRefGoogle Scholar
  94. Hsiao YM, Ko JL (2001) Determination of destruxins, cyclic peptide toxins, produced by different strains of Metarhizium anisopliae and their mutants induced by ethyl methane sulfonate and ultraviolet using HPLC method. Toxicon 39:837–841PubMedCrossRefGoogle Scholar
  95. Hu G, St Leger RJ (2002) Field studies using a recombinant mycoinsecticide (Metarhizium anisopliae) reveal that it is rhizosphere competent. Appl Environ Microbiol 68:6383–6387PubMedCrossRefGoogle Scholar
  96. Hung S-Y, Boucias DG, Vey AJ (1993) Effect of Beauveria bassiana and Candida albicans on the cellular defense response of Spodoptera exigua. J Invert Pathol 61:179–187CrossRefGoogle Scholar
  97. Iijima R, Kurata S, Natori S (1993) Purification, characterization and cDNA cloning of an antifungal protein from the hemolymph of Sarcophaga peregrina (flesh fly) larvae. J Biol Chem 268:12055–12061PubMedGoogle Scholar
  98. James RR (2001) Effects of exogenous nutrients on conidial germination and virulence against the silverleaf whitefly for two hyphomycetes. J Invert Pathol 77:99–107CrossRefGoogle Scholar
  99. James RR, Buckner JS, Freeman TP (2003) Cuticular lipids and silverleaf whitefly stage affect conidial germination of Beauveria bassiana and Paecilomyces fumosoroseus. J Invert Pathol 84:67–74CrossRefGoogle Scholar
  100. Jeffs LB, Khachatourians GG (1997a) Estimation of spore hydrophobicity for members of the genera Beauveria, Metarhizium, and Tolypocladium by salt-mediated aggregation and sedimentation. Can J Microbiol 43:23–28CrossRefGoogle Scholar
  101. Jeffs LB, Khachatourians GG (1997b) Toxic properties of Beauveria pigments on erythrocyte membranes. Toxicon 35:1351–1356PubMedCrossRefGoogle Scholar
  102. Jeffs LB, Xavier IJ, Matai RE, Khachatourians GG (1999) Relationships between fungal spore morphologies and surface properties for entomopathogenic members of the genera Beauveria, Metarhizium, Paecilomyces, Tolypocladium and Verticillium. Can J Microbiol 45:936–948CrossRefGoogle Scholar
  103. Jegorov A, Sedmera P, Matha V (1993) Biosynthesis of destruxins. Phytochemistry 33:1403–1405PubMedCrossRefGoogle Scholar
  104. Joshi L, St Leger RJ (1999) Cloning, expression, and substrate specificity of MeCPA, a zinc carboxypeptidase that is secreted into infected tissues by the fungal entomopathogen Metarhizium anisopliae. J Biol Chem 274:9803–9811PubMedCrossRefGoogle Scholar
  105. Joshi L, St Leger RJ, Bidochka MJ (1995) Cloning of a cuticle-degrading protease from the entomopathogenic fungus, Beauveria bassiana. FEMS Microbiol Lett 125:211–217PubMedCrossRefGoogle Scholar
  106. Joshi L, St Leger RJ, Roberts DW (1997) Isolation of a cDNA encoding a novel subtilisin-like protease (Pr1B) from the entomopathogenic fungus, Metarhizium anisopliae using differential display-RT-PCR. Gene 197:1–8PubMedCrossRefGoogle Scholar
  107. Kamp AM, Bidochka MJ (2002a) Conidium production by insect pathogenic fungi on commercially available agars. Lett Appl Microbiol 35:74–77PubMedCrossRefGoogle Scholar
  108. Kamp AM, Bidochka MJ (2002b) Protein analysis in a pleomorphically deteriorated strain of the insect-pathogenic fungus Metarhizium anisopliae. Can J Microbiol 48:787–792PubMedCrossRefGoogle Scholar
  109. Kang SC, Park S, Lee DG (1998) Isolation and characterization of a chitinase cDNA from the entomopathogenic fungus, Metarhizium anisopliae. FEMS Microbiol Lett 165:267–271PubMedGoogle Scholar
  110. Kang SC, Park S, Lee DG (1999) Purification and characterization of a novel chitinase from the entomopathogenic fungus, Metarhizium anisopliae. J Invert Pathol 73:276–281CrossRefGoogle Scholar
  111. Kang SW, Lee SH, Yoon CS, Kim SW (2005) Conidia production by Beauveria bassiana during solid-state fermentation in a packed-bed bioreactor. Biotechnol Lett 27:135–139PubMedCrossRefGoogle Scholar
  112. Khachatourians GG (1986) Production and use of biological pest control agents. Trends Biotechnol 4:120–124CrossRefGoogle Scholar
  113. Khachatourians GG (1991) Physiology and genetics of entomopathogenic fungi. In: Arora DK, Ajello L, Mukerji KG (eds) Handbook of applied mycology, vol 2: humans, animals, and insects. Dekker, New York, pp 613–661Google Scholar
  114. Khachatourians GG (1996) Biochemistry and molecular biology of entomopathogenic fungi. In: Howard DH, Miller JD (eds) Human and animal relationships. (Mycota VI) Springer, Heidelberg, pp 331–363Google Scholar
  115. Khachatourians GG (2008) Insecticides, microbial. In: Schaecter M, Summers WC et al (eds) Encyclopedia of microbiology, vol 2, 3rd edn. Elsevier, New YorkGoogle Scholar
  116. Khachatourians GG, Hegedus DD (2004) Mitochondrial genome. In: Muller GM, Bills GF, Foster MS (eds) Biodiversity of fungi: inventory and monitoring methods. Elsevier, San Diego, pp 94–102Google Scholar
  117. Khachatourians GG, Uribe D (2004) Genomics of entomopathogenic fungi. In: Arora DK, Khachatourians GG (eds) Fungal genomics. (Applied mycology and biotechnology, vol 4) Elsevier, London, pp 353–377Google Scholar
  118. Khachatourians GG, Valencia E (1999) Integrated pest management and entomopathogenic fungal biotechnology in the Latin Americas II. Key research and development prerequisites. Rev Acad Colomb Cienc Exact Fis Nat 23:489–496Google Scholar
  119. Khachatourians GG, Valencia E, Miranpuri GS (2002) Beauveria bassiana and other entomopathogenic fungi in the management of insect pests. In: Koul O, Dhaliwal GS (eds) Microbial biopesticides, vol 2. Taylor & Francis, London, pp 239–275CrossRefGoogle Scholar
  120. Kikuchi H, Miyagawa Y, Sahashi Y, Inatomi S, Haganuma A, Nakahata N, Oshima Y (2004) Novel trichothecanes, paecilomycine A, B, and C, isolated from entomopathogenic fungus, Paecilomyces tenuipes. Tetrahedron Lett 45:6225–6228CrossRefGoogle Scholar
  121. Kim H-K, Hoe H-S, Suh DS, Kang SC, Hwang C, Kwon S-T (1999) Gene structure and expression of the gene from Beauveria bassiana encoding bassiasin I, an insect cuticle-degrading serine protease. Biotechnol Lett 21:777–783CrossRefGoogle Scholar
  122. Kirkland BH, Westwood GS, Keyhani NO (2004) Pathogenicity of entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae to Ixodidae tick species Dermacentor variabilis, Rhipicephalus sanguineus, and Ixodes scapularis. J Med Entomol 41:705–711PubMedCrossRefGoogle Scholar
  123. Kirkland BH, Eisa A, Keyhani NO (2005) Oxalic acid as a fungal acaricidal virulence factor. J Med Entomol 42:346–351PubMedCrossRefGoogle Scholar
  124. Kouvelis VN, Zare R, Bridge PD, Typas MA (1999) Differentiation of mitochondrial subgroups in the Verticillium lecanii species complex. Lett Appl Microbiol 28:263–268CrossRefGoogle Scholar
  125. Kouvelis VN, Ghikas DV, Typas MA (2004) The analysis of the complete mitochondrial genome of Lecanicillium muscarium (synonym Verticillium lecanii) suggests a minimum common gene organization in mtDNAs of Sordariomycetes: phylogenetic implications. Fungal Genet Biol 41:930–940PubMedCrossRefGoogle Scholar
  126. Krasnoff SB, Gupta S (1991) Identification and biosynthesis of efrapeptins in fungus Tolypocladium geodes Gams (Deuteromycotina:Hyphomycetes). J Chem Ecol 17:1953–1960CrossRefGoogle Scholar
  127. Krasnoff SB, Reategui RF, Wagenaar MM, Gloer JB, Gibson DM (2005) Cicadapeptins I and II: new Aib-containing peptides from the entomopathogenic fungus Cordyceps heteropoda. J Nat Prod 68:50–55PubMedCrossRefGoogle Scholar
  128. Lang G, Blunt JW, Cummings NJ, Cole AL, Munro MH (2005) Hirsutide, a cyclic tetrapeptide from a spider-derived entomopathogenic fungus, Hirsutella sp. J Nat Prod 68:1303–1305PubMedCrossRefGoogle Scholar
  129. Lecuona R, Riba G, Cassier P, Clement JL (1991) Alterations of insect epicuticular hydrocarbons during infection with Beauveria bassiana or Beauveria brongniartii. J Invert Pathol 58:10–18CrossRefGoogle Scholar
  130. Liu JC, Boucias DG, Pendland JC, Liu WZ, Maruniak J (1996) The mode of action of hirsutellin A on eukaryotic cells. J Invert Pathol 67:224–228CrossRefGoogle Scholar
  131. Lord JC (2005) From Metchnikoff to Monsanto and beyond: the path of microbial control. J Invert Pathol 89:19–29CrossRefGoogle Scholar
  132. Lord JC, Howard RW (2004) A proposed role for the cuticular fatty amides of Liposcelis bostrychophila (Psocoptera: Liposcelidae) in preventing adhesion of entomopathogenic fungi with dry-conidia. Mycopathologia 158:211–217PubMedCrossRefGoogle Scholar
  133. Lord JC, Anderson S, Stanley DW (2002) Eicosanoids mediate Manduca sexta cellular response to the fungal pathogen Beauveria bassiana: a role for the lipoxygenase pathway. Arch Insect Biochem Physiol 51:46–54PubMedCrossRefGoogle Scholar
  134. Luz C, Fargues J (1997) Temperature and moisture requirements for conidial germination of an isolate of Beauveria bassiana, pathogenic to Rhodnius prolixus. Mycopathologia 138:117–125PubMedCrossRefGoogle Scholar
  135. Luz C, Fargues J (1998) Factors affecting conidial production of Beauveria bassiana from fungus-killed cadavers of Rhodnius prolixus. J Invert Pathol 72:97–103CrossRefGoogle Scholar
  136. Masuka A, Manjonjo V (1996) Laboratory screening of Metarhizium flavoviride and Beauveria bassiana for the control of Mecostibus pinivorus, a Pinus patula defoiliator in Zimbabwe. J Appl Sci S Afr 2:91–96Google Scholar
  137. Maurer P, Rejasse A, Capy P, Langin T, Riba G (1997) Isolation of the transposable element hupfer from the entomopathogenic fungus Beauveria bassiana by insertion mutagenesis of the nitrate reductase structural gene. Mol Gen Genet 256:195–202PubMedCrossRefGoogle Scholar
  138. Mavridou A, Typas MA (1998) Intraspecific polymorphism in Metarhizium anisopliae var anisopliae revealed by analysis of rRNA gene complex and mtDNA RFLPs. Mycol Res 102:1233–1241CrossRefGoogle Scholar
  139. Mavridou A, Cannone J, Typas MA (2000) Identification of group-I introns at three different positions within the 28S rDNA gene of the entomopathogenic fungus Metarhizium anisopliae var. anisopliae. Fungal Genet Biol 31:79–90PubMedCrossRefGoogle Scholar
  140. Michelitsch A, Ruckert U, Rittmannsberger A, Seger C, Strasser H, Likussar W (2004) Accurate determination of oosporein in fungal culture broth by differential pulse polarography. J Agric Food Chem 52:1423–1426PubMedCrossRefGoogle Scholar
  141. Miranpuri GS, Khachatourians GG (1994) Bacterial and fungal control of hematophagous vectors: a review. J Insect Sci 6:1–14Google Scholar
  142. Muroi M, Shiragami N, Takatsuki A (1994) Destruxin B, a specific and readily reversible inhibitor of vacuolar type H+-translocating ATPase. Biochem Biophys Res Commun 205:1358–1365PubMedCrossRefGoogle Scholar
  143. Nahar P, Ghormade V, Deshpande MV (2004) The extracellular constitutive production of chitin deacetylase in Metarhizium anisopliae: possible edge to entomopathogenic fungi in the biological control of insect pests. J Invert Pathol 85:80–88CrossRefGoogle Scholar
  144. Nam JS, Lee DH, Lee KH, Park HM, Bae KS (1998) Cloning and phylogenic analysis of chitin synthase genes from the insect pathogenic fungus, Metarhizium anisopliae var. anisopliae. FEMS Microbiol Lett 159:77–84PubMedCrossRefGoogle Scholar
  145. Neuvéglise C, Brygoo Y, Riba G (1997) 28s rDNA group-I introns: a powerful tool for identifying strains of Beauveria brongniartii. Mol Ecol 6:373–381PubMedCrossRefGoogle Scholar
  146. Ouedraogo RM, Goettel MS, Brodeur J (2004) Behavioral thermoregulation in the migratory locust: a therapy to overcome fungal infection. Oecologia 138:312–319PubMedCrossRefGoogle Scholar
  147. Panaccione DG, Scott-Craig JS, Pocard J-A, Walton JD (1992) Acyclic peptide synthetase gene required for pathogenicity of the fungus Cochiliobolus carbonum on maize. Proc Natl Acad Sci USA 89:6590–6594PubMedCrossRefGoogle Scholar
  148. Pedras MS, Montaut S (2003) Probing crucial metabolic pathways in fungal pathogens of crucifers: biotransformation of indole-3-acetaldoxime, 4-hydroxyphenylacetaldoxime, and their metabolites. Bioorg Med Chem 11:3115–3120PubMedCrossRefGoogle Scholar
  149. Pedras MS, Irina ZL, Ward DE (2002) The destruxins: synthesis, biosynthesis, biotransformation, and biological activity. Phytochemistry 59:579–596PubMedCrossRefGoogle Scholar
  150. Pendland JC, Boucias DG (1992) Ultrastructural localization of carbohydrate in cell walls of the entomogenous hyphomycete Nomuraea rileyi. Can J Microbiol 38:377–386Google Scholar
  151. Pendland JC, Boucias DG (1998) Characterization of monoclonal antibodies against cell wall epitopes of the insect pathogenic fungus, Nomuraea rileyi: differential binding to fungal surfaces and cross-reactivity with host hemocytes and basement membrane components. Eur J Cell Biol 75:118–127PubMedGoogle Scholar
  152. Pendland JC, Boucias DG (2000) Comparative analysis of the binding of antibodies prepared against the insect Spodoptera exigua and against the mycopathogen Nomuraea rileyi. J Invert Pathol 75:107–116CrossRefGoogle Scholar
  153. Pendland JC, Hung S-Y, Boucias DG (1993) Evasion of host defense by in vivo produced protoplast-like cells of the insect mycopathogen Beauveria bassiana. J Bacteriol 175:5962–5969PubMedGoogle Scholar
  154. Qazi S, Khachatourians GG (2006) Insect pests of Pakistan and their management practices: prospects for the use of entomopathogenic fungi. Biopest Int 1:13–24Google Scholar
  155. Qazi SS, Khachatourians GG (2007) Hydrated conidia of Metarhizium anisopliae release a family of metalloproteases. J Invert Pathol 95:48–59CrossRefGoogle Scholar
  156. Qazi SS, Khachatourians GG (2008) Addition of exogenous carbon and nitrogen sources to aphid exuviae modulates synthesis of proteases and chitinase by germinating conidia of Beauveria bassiana. Arch Microbiol. doi: 10.1007/w00203–008-0355–9Google Scholar
  157. Quesada-Moraga E, Vey A (2004) Bassiacridin, a protein toxic for locusts secreted by the entomopathogenic fungus Beauveria bassiana. Mycol Res 108: 441–452PubMedCrossRefGoogle Scholar
  158. Rangel DE, Braga GU, Anderson AJ, Roberts DW (2005) Influence of growth environment on tolerance to UV-B radiation, germination speed, and morphology of Metarhizium anisopliae var. acridum conidia. J Invert Pathol 90:55–58CrossRefGoogle Scholar
  159. Rangel DE, Anderson AJ, Roberts DW (2006a) Growth of Metarhizium anisopliae on non-preferred carbon sources yields conidia with increased UV-B tolerance. J Invertebr Pathol 93:127–134PubMedCrossRefGoogle Scholar
  160. Rangel DE, Butler MJ, Torabinejad J, Anderson AJ, Braga GU, Day AW, Roberts DW (2006b) Mutants and isolates of Metarhizium anisopliae are diverse in their relationships between conidial pigmentation and stress tolerance. J Invertebr Pathol 93:170–182PubMedCrossRefGoogle Scholar
  161. Rehner SA (2005) Phylogenetics of the insect pathogenic genus Beauveria. In: Vega FE, Blackwell M (eds) Insect–fungal associations: ecology and evolution. Oxford University Press, Oxford, pp 3–27Google Scholar
  162. Roberts DW, St Leger RJ (2004) Metarhizium spp., cosmopolitan insect-pathogenic fungi: mycological aspects. Adv Appl Microbiol 54:1–70PubMedCrossRefGoogle Scholar
  163. Rodriguez R, Cullen D, Kurtzman CP, Khachatourians GG, Hegedus DD (2004) Molecular methods for discriminating taxa, monitoring species and assessing fungal diversity. In: Muller GM, Bills GF, Foster MS (eds) Biodiversity of fungi: inventory and monitoring methods. Elsevier, San Diego, pp 77–94CrossRefGoogle Scholar
  164. Roy HE, Steinkraus DC, Eilenberg J, Hajek AE, Pell JK (2006) Bizarre interactions and endgames: entomopathogenic fungi and their arthropod hosts. Annu Rev Entomol 51:331–357PubMedCrossRefGoogle Scholar
  165. Ryan MJ, Bridge PD, Smith D, Jeffries P (2002) Phenotypic degeneration occurs during sector formation in Metarhizium anisopliae. J Appl Microbiol 93:163–168PubMedCrossRefGoogle Scholar
  166. Samuels RI, Paterson IC (1995) Cuticle degrading proteases from insect moulting fluid and culture filtrates of entomopathogenic fungi. Comp Biochem Physiol B Biochem Mol Biol 110:661–669PubMedCrossRefGoogle Scholar
  167. Sanchez-Murillo RI, Torre-Martinez M de la, Aguirre-Linares J, Herrera-Estrella A (2004) Light-regulated asexual reproduction in Paecilomyces fumosoroseus. Microbiology 150:311–319PubMedCrossRefGoogle Scholar
  168. Schmitz V, Dedryver CA, Pierre JS (1993) Influence of an Erynia neoaphidis infection on the relative rate of increase of the cereal aphid Sitobion avenae. J Invert Pathol 61:62–68CrossRefGoogle Scholar
  169. Scholte EJ, Njiru BN, Smallegange RC, Takken W, Knols BG (2003) Infection of malaria (Anopheles gambiae s.s.) and filariasis (Culex quinquefasciatus) vectors with the entomopathogenic fungus Metarhizium anisopliae. Malaria J 2:29CrossRefGoogle Scholar
  170. Scholte EJ, Ng’habi K, Kihonda J, Takken W, Paaijmans K, Abdulla S, Killeen GF, Knols BG (2005) An entomopathogenic fungus for control of adult African malaria mosquitoes. Science 308:1641–1642PubMedCrossRefGoogle Scholar
  171. Screen SE, St Leger RJ (2000) Cloning, expression, and substrate specificity of a fungal chymotrypsin. Evidence for lateral gene transfer from an actinomycete bacterium. J Biol Chem 275:6689–6694PubMedCrossRefGoogle Scholar
  172. Screen S, Bailey A, Charnley K, Cooper R, Clarkson J (1997) Carbon regulation of the cuticle-degrading enzyme PR1 from Metarhizium anisopliae may involve a trans-acting DNA-binding protein CRR1, a functional equivalent of the Aspergillus nidulans CREA protein. Curr Genet 31:511–518PubMedCrossRefGoogle Scholar
  173. Screen S, Bailey A, Charnley K, Cooper R, Clarkson J (1998) Isolation of a nitrogen response regulator gene (nrr1) from Metarhizium anisopliae. Gene 221:17–24PubMedCrossRefGoogle Scholar
  174. Screen SE, Hu G, St Leger RJ (2001) Transformants of Metarhizium anisopliae sf. anisopliae overexpressing chitinase from Metarhizium anisopliae sf. acridum show early induction of native chitinase but are not altered in pathogenicity to Manduca sexta. J Invert Pathol 78:260–266CrossRefGoogle Scholar
  175. Scully LR, Bidochka MJ (2005) Serial passage of the opportunistic pathogen Aspergillus flavus through an insect host yields decreased saprobic capacity. Can J Microbiol 51:185–189PubMedCrossRefGoogle Scholar
  176. Scully LR, Bidochka MJ (2006a) A cysteine/methionine auxotroph of the opportunistic fungus Aspergillus flavus is associated with host-range restriction: a model for emerging diseases. Microbiology 152:223–232PubMedCrossRefGoogle Scholar
  177. Scully LR, Bidochka MJ (2006b) Developing insect models for the study of current and emerging human pathogens. FEMS Microbiol Lett 263:1–9PubMedCrossRefGoogle Scholar
  178. Scully LR, Bidochka MJ (2006c) The host acts as a genetic bottleneck during serial infections: an insect-fungal model system. Curr Genet 50:335–345PubMedCrossRefGoogle Scholar
  179. Segers R, Butt TM, Carder JH,. Keen JN, Kerry BR, Peberdy JF (1999), The subtilisins of fungal pathogens of insects, nematodes and plants: distribution and variation. Mycol Res 103:395–402CrossRefGoogle Scholar
  180. Shah FA, Butt TM (2005) Influence of nutrition on the production and physiology of sectors produced by the insect pathogenic fungus Metarhizium anisopliae. FEMS Microbiol Lett 250:201–207PubMedCrossRefGoogle Scholar
  181. Shah PA, Pell JK (2003) Entomopathogenic fungi as biological control agents. Appl Microbiol Biotechnol 61:413–423PubMedGoogle Scholar
  182. Shapiro-Ilan DI, Fuxa JR, Lacey LA, Onstad DW, Kaya HK, (2004) Definitions of pathogenicity and virulence in invertebrate pathology. J Invert Pathol 88:1–7CrossRefGoogle Scholar
  183. Sheng J, An K, Deng C, Li W, Bao X, Qiu D (2006) Cloning a cuticle-degrading serine protease gene with biologic control function from Beauveria brongniartii and its expression in Escherichia coli. Curr Microbiol 53:124–128PubMedCrossRefGoogle Scholar
  184. Silva MV da, Santi L, Staats CC, Costa AM da, Colodel EM, Driemeier D, Vainstein MH, Schrank A (2005) Cuticle-induced endo/exoacting chitinase CHIT30 from Metarhizium anisopliae is encoded by an ortholog of the chi3 gene. Res Microbiol 156:382–392PubMedCrossRefGoogle Scholar
  185. Small C-LN, Bidochka MJ (2005) Up-regulation of Pr1, a subtilisin-like protease, during conidiation in the insect pathogen Metarhizium anisopliae. Mycol Res 109:307–313PubMedCrossRefGoogle Scholar
  186. Smits N, Briere JF, Fargues J (2003) Comparison of non-linear temperature-dependent development rate models applied to in vitro growth of entomopathogenic fungi. Mycol Res 107:1476–1484PubMedCrossRefGoogle Scholar
  187. Sosa-Gomez DR, Boucias DG, Nation JL (1997) Attachment of Metarhizium anisopliae to the southern green stink bug Nezara viridula cuticle and fungistatic effect of cuticular lipids and aldehydes. J Invert Pathol 69:31–39CrossRefGoogle Scholar
  188. St Leger R, Joshi L, Bidochka MJ, Roberts DW (1996) Construction of an improved mycoinsecticide overexpressing a toxic protease. Proc Natl Acad Sci USA 93:6349–6354CrossRefGoogle Scholar
  189. St Leger RJ, Joshi L, Roberts DW (1997) Adaptation of proteases and carbohydrates of saprophytic, phytopathogenic and entomopathogenic fungi to the requirements of their ecological niches. Microbiology 143:1983–1992CrossRefGoogle Scholar
  190. St Leger RJ, Screen SE, Shams-Pirzadeh B (2000) Lack of host specialization in Aspergillus flavus. Appl Environ Microbiol 66:320–324CrossRefGoogle Scholar
  191. Staats CC, Silva MS, Pinto PM, Vainstein MH, Schrank A (2004) The Metarhizium anisopliae trp1 gene: cloning and regulatory analysis. Curr Microbiol 49:66–70PubMedCrossRefGoogle Scholar
  192. Strasser H, Abendstein D, Stuppner H, Butt TM (2000a) Monitoring the distribution of secondary metabolites produced by the entomogenous fungus Beauveria brongniartii with particular reference to oosporein. Mycol Res 104:1227–1233CrossRefGoogle Scholar
  193. Strasser H, Vey A, Butt TM (2000b) Are there any risks in using entomopathogenic fungi for pest control, with particular reference to the bioactive metabolites of Metarhizium, Tolypocladium and Beauveria species? Biocontrol Sci Technol 10:717–735CrossRefGoogle Scholar
  194. Sugimoto M, Koike M, Hiyama N, Nagao H (2003) Genetic, morphological, and virulence characterization of the entomopathogenic fungus Verticillium lecanii. J Invert Pathol 82:176–187CrossRefGoogle Scholar
  195. Supothina S, Isaka M, Kirtikara K, Tanticharoen M, Thebtaranonth Y (2004) Enniatin production by the entomopathogenic fungus Verticillium hemipterigenum BCC 1449. J Antibiot 57:732–738PubMedGoogle Scholar
  196. Tang CY, Chen YW, Jow GM, Chou CJ, Jeng CJ (2005) Beauvericin activates Ca2+-activated Cl currents and induces cell deaths in Xenopus oocytes via influx of extracellular Ca2+. Chem Res Toxicol 18:825–833PubMedCrossRefGoogle Scholar
  197. Tarocco F, Lecuona RE, Couto AS, Arcas JA (2005) Optimization of erythritol and glycerol accumulation in conidia of Beauveria bassiana by solid-state fermentation, using response surface methodology. Appl Microbiol Biotechnol 68:481–488PubMedCrossRefGoogle Scholar
  198. Tartar A, Boucias DG (2004) A pilot-scale expressed sequence tag analysis of Beauveria bassiana gene expression reveals a tripeptidyl peptidase that is differentially expressed in vivo. Mycopathologia 158:201–209PubMedCrossRefGoogle Scholar
  199. Tartar A, Shapiro AM, Scharf DW, Boucias DG (2005) Differential expression of chitin synthase (CHS) and glucan synthase (FKS) genes correlates with the formation of a modified, thinner cell wall in in vivo-produced Beauveria bassiana cells. Mycopathologia 160:303–314PubMedCrossRefGoogle Scholar
  200. Tefera T, Pringle KL (2003a) Effect of exposure method to Beauveria bassiana and conidia concentration on mortality, mycosis, and sporulation in cadavers of Chilo partellus (Lepidoptera: Pyralidae). J Invert Pathol 84:90–95CrossRefGoogle Scholar
  201. Tefera T, Pringle KL (2003b) Food consumption by Chilo partellus (Lepidoptera: Pyralidae) larvae infected with Beauveria bassiana and Metarhizium anisopliae and effects of feeding natural versus artificial diets on mortality and mycosis. J Invert Pathol 84:220–225CrossRefGoogle Scholar
  202. Thomas KC, Khachatourians GG, Ingledew WM (1987) Production and properties of Beauveria bassiana conidia cultivated in submerged culture. Can J Microbiol 33:12–20CrossRefGoogle Scholar
  203. Tolfo Bittencourt SE, Amaral de Castro L, Estrazulas Farias S, Nair Bao S, Schrank A, Henning Vainstein M (2004) Purification and ultrastructural localization of a copper-zinc superoxide dismutase (CuZnSOD) from the entomopathogenic and acaricide fungus Metarhizium anisopliae. Res Microbiol 155:681–687PubMedCrossRefGoogle Scholar
  204. Traniello JF, Rosengaus RB, Savoie K (2002) The development of immunity in a social insect: evidence for the group facilitation of disease resistance. Proc Natl Acad Sci USA 99:6838–6842PubMedCrossRefGoogle Scholar
  205. Tymon AM, Pell JK (2005) ISSR, ERIC and RAPD techniques to detect genetic diversity in the aphid pathogen Pandora neoaphidis. Mycol Res 109:285–293PubMedCrossRefGoogle Scholar
  206. Typas MA, Griffin AM, Bainbridge BW, Heale JB (1992) Restriction fragment length polymorphism in mitochondrial DNA and ribosomal RNA gene complexes as an aid to the characterization of species and sub-species populations in the genus Verticillium. FEMS Microbiol Lett 95:157–162CrossRefGoogle Scholar
  207. Uribe D, Khachatourians GG (2004) Restriction fragment length polymorphism of mitochondrial genome of the entomopathogenic fungus Beauveria bassiana reveals high intraspecific variation. Mycol Res 108:1070–1078PubMedCrossRefGoogle Scholar
  208. Uribe D, Khachatourians GG (2008) Identification and characterization of an alternative oxidase in the entomopathogenic fungus Metarhizium anisopliae. Can J Microbiol 54:1–9CrossRefGoogle Scholar
  209. Urtz BE, Rice WC (1997) RAPD-PCR characterization of Beauveria bassiana isolates from the rice water weevil Lissorhoptrus oryzophilus. Lett Appl Microbiol 25:405–409CrossRefGoogle Scholar
  210. Urtz BE, Rice WC (2000) Purification and characterization of a novel extracellular protease from Beauveria bassiana. Mycol Res 104:180–186CrossRefGoogle Scholar
  211. Valadares-Inglis MC, Peberdy JF (1997) Location of chitinolytic enzymes in protoplasts and whole cells of the entomopathogenic fungus Metarhizium anisopliae. Mycol Res 101:1393–1396CrossRefGoogle Scholar
  212. Valencia E (2002) General and molecular characterization of Beauveria bassiana and other fungal isolates for the control of Bemisia tabaci whiteflies. PhD thesis, University of Saskatchewan, Saskatoon, pp 356Google Scholar
  213. Vandenberg JD, Cantone FA (2004) Effect of serial transfer of three strains of Paecilomyces fumosoroseus on growth in vitro, virulence, and host specificity. J Invert Pathol 85:40–45CrossRefGoogle Scholar
  214. Vandenberg JD, Ramos M, Altre JA (1998) Dose-response and age- and temperature-related susceptibility of the Diamondback moth (Lepidoptera: Plutellidae) to two isolates of Beauveria bassiana (Hyphomycetes: Moniliaceae). Environ Entomol 27:1017–1021Google Scholar
  215. Vega FE, Dowd PF, McGuire MR, Jackson MA, Nelsen TC (1997) In vitro effects of secondary plant compounds on germination of blastospores of the entomopathogenic fungus Paecilomyces fumosoroseus (Deuteromycotina: Hyphomycetes) J Invert Pathol 70:209–213CrossRefGoogle Scholar
  216. Vey A, Fargues J (1977) Histological and ultrastructural studies of Beauveria bassiana infection in Leptinotarsa decemlineta larvae during ecdysis. J Invert Pathol 30:207–215CrossRefGoogle Scholar
  217. Vey A, Hoagland R, Butt TM (2001) Toxic metabolites of fungal biocontrol agents. In: Butt TM, Jackson CW, Magan N (eds) Fungi as biocontrol agents. CAB International, Wallingford, pp 311–345CrossRefGoogle Scholar
  218. Viaud M, Couteaudier Y, Riba G (1998) Molecular analysis of hypervirulent somatic hybrids of the entomopathogenic fungi Beauveria bassiana and Beauveria sulfurescens. Appl Environ Microbiol 64:88–93PubMedGoogle Scholar
  219. Vilcinskas A, Jegorov A, Landa Z, Gotz P, Matha V (1999) Effects of beauverolide L and cyclosporin A on humoral and cellular immune response of the greater wax moth, Galleria mellonella. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 122:83–92PubMedCrossRefGoogle Scholar
  220. Wang CS, St Leger RJ (2006) A collagenous protective coat enables Metarhizium anisopliae to evade insect immune responses. Proc Natl Acad Sci USA 103:6647–6652PubMedCrossRefGoogle Scholar
  221. Wang CS, Li Z, Typas MA, Butt TM (2003a) Nuclear large subunit rDNA group I intron distribution in a population of Beauveria bassiana strains: phylogenetic implications. Mycol Res 107:1189–2000PubMedCrossRefGoogle Scholar
  222. Wang CS, Shah FA, Patel N, Li Z, Butt TM (2003b) Molecular investigation on strain genetic relatedness and population structure of Beauveria bassiana. Environ Microbiol 5:908–915PubMedCrossRefGoogle Scholar
  223. Wang CS, Skrobek A, Butt TM (2003c) Concurrence of losing a chromosome and the ability to produce destruxins in a mutant of Metarhizium anisopliae. FEMS Microbiol Lett 226:373–378PubMedCrossRefGoogle Scholar
  224. Wang CS, Skrobek A, Butt TM (2004) Investigations on the destruxin production of the entomopathogenic fungus Metarhizium anisopliae. J Invert Pathol 85: 168–174CrossRefGoogle Scholar
  225. Wang CS, Butt TM, St Leger RJ (2005a) Colony sectorization of Metarhizium anisopliae is a sign of ageing. Microbiology 151:3223–3236PubMedCrossRefGoogle Scholar
  226. Wang CS, Hu G, St Leger R (2005b) Differential gene expression by Metarhizium anisopliae growing in root exudate and host (Manduca sexta) cuticle or hemolymph reveals mechanisms of physiological adaptation. Fungal Genet Biol 42:704–718PubMedCrossRefGoogle Scholar
  227. Xavier IJ, Khachatourians GG (1996) Heat-shock response of the entomopathogenic fungus Beauveria brongniartii. Can J Microbiol 42:577–585CrossRefGoogle Scholar
  228. Xavier IJ, Khachatourians GG, Ovsenek N (1999) Constitutive and heat-inducible heat shock element binding activities of heat shock factor in a group of filamentous fungi. Cell Stress Chaperones 4:211–222PubMedCrossRefGoogle Scholar
  229. Yeo H, Pell JK, Alderson PG, Clark SJ, Pye BJ (2003) Laboratory evaluation of temperature effects on the germination and growth of entomopathogenic fungi and on their pathogenicity to two aphid species. Pest Manage Sci 59:156–165CrossRefGoogle Scholar
  230. Ying SH, Feng MG (2004) Relationship between thermotolerance and hydrophobin-like proteins in aerial conidia of Beauveria bassiana and Paecilomyces fumosoroseus as fungal biocontrol agents. J Appl Microbiol 97:323–331PubMedCrossRefGoogle Scholar
  231. Yokoyama E, Yamagishi K, Hara A (2002) Group-I intron containing a putative homing endonuclease gene in the small subunit ribosomal DNA of Beauveria bassiana IFO 31676. Mol Biol Evol 19:2022–2025PubMedGoogle Scholar
  232. Ypsilos IK, Magan N (2004) Impact of water-stress and washing treatments on production, synthesis and retention of endogenous sugar alcohols and germinability of Metarhizium anisopliae blastospores. Mycol Res 108:1337–1345PubMedCrossRefGoogle Scholar
  233. Zurek L, Wes WD, Krasnoff SB, Schal C (2002) Effect of the entomopathogenic fungus, Entomophthora muscae (Zygomycetes: Entomophthoraceae), on sex pheromone and other cuticular hydrocarbons of the house fly, Musca domestica. J Invert Pathol 80:171–177CrossRefGoogle Scholar
  234. Zhao H, Charnley AK, Wang Z, Yin Y, Li Z, Li Y, Cao Y, Peng G, Xia Y (2006) Identification of an extracellular acid trehalase and its gene involved in fungal pathogenesis of Metarizium anisopliae. J Biochem 140:319–327PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • George G. Khachatourians
    • 1
  • Sohail S. Qazi
    • 1
  1. 1.Bioinsecticide Research Laboratories, College of Agriculture and BioresourcesUniversity of SaskatchewanSaskatoonCanada

Personalised recommendations