Curve Fitting by Fractal Interpolation

Part of the Lecture Notes in Computer Science book series (LNCS, volume 4750)


Fractal interpolation provides an efficient way to describe data that have an irregular or self-similar structure. Fractal interpolation literature focuses mainly on functions, i.e. on data points linearly ordered with respect to their abscissa. In practice, however, it is often useful to model curves as well as functions using fractal intepolation techniques. After reviewing existing methods for curve fitting using fractal interpolation, we introduce a new method that provides a more economical representation of curves than the existing ones. Comparative results show that the proposed method provides smaller errors or better compression ratios.


fractal interpolation curve fitting iterated function systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cochran, W.O., Hart, J.C., Flynn, P.J.: On approximating rough curves with fractal functions. Proc. Graphics Interface. 1, 65–72 (1998)Google Scholar
  2. 2.
    Mazel, D.S.: Representation of discrete sequences with three-dimensional iterated function systems. IEEE Trans. Signal Processing 42, 3269–3271 (1994)CrossRefGoogle Scholar
  3. 3.
    Mazel, D.S., Hayes, M.H.: Hidden-variable fractal interpolation of discrete sequences. Proc. Int. Conf. ASSP. 1, 3393–3396 (1991)Google Scholar
  4. 4.
    Uemura, S., Haseyama, M., Kitajima, H.: Efficient contour shape description by using fractal interpolation functions. IEEE Proc. ICIP. 1, 485–488 (2002)Google Scholar
  5. 5.
    Dalla, L., Drakopoulos, V.: On the parameter identification problem in the plane and the polar fractal interpolation functions. J. Approx. Theory 101, 290–303 (1999)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Guérin, E., Tosan, E., Baskurt, A.: Fractal coding of shapes based on a projected IFS model. In: ICIP, vol. 2, pp. 203–206. IEEE Computer Society Press, Los Alamitos (2000)Google Scholar
  7. 7.
    Guérin, E., Tosan, E., Baskurt, A.: A fractal approximation of curves. Fractals 9, 95–103 (2001)CrossRefMathSciNetzbMATHGoogle Scholar
  8. 8.
    Navascués, M.A., Sebastián, M.V.: Fitting curves by fractal interpolation: An application to the quantification of cognitive brain processes. In: Novak, M.M. (ed.) Thinking in patterns: Fractals and related phenomena in nature, pp. 143–154. World Scientific, Singapore (2004)CrossRefGoogle Scholar
  9. 9.
    Cader, A., Krupski, M.: New interpolation method with fractal curves. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 1071–1081. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Barnsley, M.F.: Fractal functions and interpolation. Constr. Approx. 2, 303–329 (1986)CrossRefMathSciNetzbMATHGoogle Scholar
  11. 11.
    Barnsley, M.F.: Fractals everywhere, 2nd edn. Academic Press, San Diego (1993)zbMATHGoogle Scholar
  12. 12.
    Zhao, C., Shi, W., Deng, Y.: A new Hausdorff distance for image matching. Pattern Recognition Lett. 26, 581–586 (2005)CrossRefGoogle Scholar
  13. 13.
    Ruan, H.J., Sha, Z., Su, W.Y.: Counterexamples in parameter identification problem of the fractal interpolation functions. J. Approx. Theory 122, 121–128 (2003)CrossRefMathSciNetzbMATHGoogle Scholar
  14. 14.
    Marvasti, M., Strahle, W.: Fractal geometry analysis of turbulent data. Signal Processing 41, 191–201 (1995)CrossRefzbMATHGoogle Scholar
  15. 15.
    Mazel, D.S., Hayes, M.H.: Using iterated function systems to model discrete sequences. IEEE Trans. Signal Processing 40, 1724–1734 (1992)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  1. 1.Department of Informatics and TelecommunicationsUniversity of Athens, PanepistimioupolisAthensGreece

Personalised recommendations