Abstract
Detailed knowledge of the traffic mixture is essential for network operators and administrators, as it is a key input for numerous network management activities. Traffic classification aims at identifying the traffic mixture in the network. Several different classification approaches can be found in the literature. However, the validation of these methods is weak and ad hoc, because neither a reliable and widely accepted validation technique nor reference packet traces with well-defined content are available. In this paper, a novel validation method is proposed for characterizing the accuracy and completeness of traffic classification algorithms. The main advantages of the new method are that it is based on realistic traffic mixtures, and it enables a highly automated and reliable validation of traffic classification. As a proof-of-concept, it is examined how a state-of-the-art traffic classification method performs for the most common application types.
This is a preview of subscription content, access via your institution.
Buying options
Preview
Unable to display preview. Download preview PDF.
References
IANA.TCP and UDP port numbers, http://www.iana.org/assignments/port-numbers
MSN Messenger, http://join.msn.com/messenger/overview2000
RFC 2246, http://www.ietf.org/rfc/rfc2246.txt
RFC 4251, http://www.ietf.org/rfc/rfc4251.txt
Skype, http://www.skype.com
The measurement created for this article, http://pics.etl.hu/~szabog/measurement.tar
uTorrent, http://www.utorrent.com
World of Warcraft, http://www.worldofwarcraft.com/index.xml
Bernaille, L., Teixeira, R., Akodkenou, I., Soule, A., Salamatian, K.: Traffic classification on the fly, vol. 36, pp. 23–26. ACM Press, New York, USA (2006)
Erman, J., Arlitt, M., Mahanti, A.: Traffic classification using clustering algorithms. In: Proc. MineNet 2006, New York, USA (2006)
Karagiannis, T., Papagiannaki, K., Faloutsos, M.: BLINC: Multilevel Traffic Classification in the Dark. In: Proc. ACM SIGCOMM, Philadelphia, Pennsylvania, USA (August 2005)
McGregor, A., Hall, M., Lorier, P., Brunskill, A.: Flow Clustering Using Machine Learning Techniques. In: Proc. PAM, Antibes Juan-les-Pins, France (April 2004)
Moore, A.W., Zuev, D.: Internet Traffic Classification Using Bayesian Analysis Techniques. In: Proc. SIGMETRICS, Banff, Alberta, Canada (June 2005)
Perenyi, M., Molnar, S.: Enhanced skype traffic identification. In: Proc. Valuetools 2007 (2007)
Sen, S., Wang, J.: Analyzing peer-to-peer traffic across large networks. In: Proc. Second Annual ACM Internet Measurement Workshop (November 2002)
Szabó, G., Szabó, I., Orincsay, D.: Accurate traffic classification. In: Proc. IEEE WOWMoM, Helsinki, Finnland (June 2007)
Xu, K., Zhang, Z., Bhattacharyya, S.: Profiling Internet Backbone Traffic: Behavior Models and Applications. In: Proc. ACM SIGCOMM, Philadelphia, Pennsylvania, USA (August 2005)
Zander, S., Nguyen, T., Armitage, G.: Automated Traffic Classification and Application Identification Using Machine Learning. In: Proc. IEEE LCN, Sydney, Australia (November 2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Szabó, G., Orincsay, D., Malomsoky, S., Szabó, I. (2008). On the Validation of Traffic Classification Algorithms. In: Claypool, M., Uhlig, S. (eds) Passive and Active Network Measurement. PAM 2008. Lecture Notes in Computer Science, vol 4979. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79232-1_8
Download citation
DOI: https://doi.org/10.1007/978-3-540-79232-1_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-79231-4
Online ISBN: 978-3-540-79232-1
eBook Packages: Computer ScienceComputer Science (R0)