Skip to main content

Improved Algorithms for Bicluster Editing

  • Conference paper
Theory and Applications of Models of Computation (TAMC 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4978))

Abstract

The NP-hard Bicluster Editing is to add or remove at most k edges to make a bipartite graph G = (V,E) a vertex-disjoint union of complete bipartite subgraphs. It has applications in the analysis of gene expression data. We show that by polynomial-time preprocessing, one can shrink a problem instance to one with 4k vertices, thus proving that the problem has a linear kernel, improving a quadratic kernel result. We further give a search tree algorithm that improves the running time bound from the trivial O(4k + |E|) to O(3.24k + |E|). Finally, we give a randomized 4-approximation, improving a known approximation with factor 11.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ailon, N., Charikar, M., Newman, A.: Aggregating inconsistent information: ranking and clustering. In: Proc. 37th STOC, pp. 684–693. ACM Press, New York (2005)

    Google Scholar 

  2. Ailon, N., Charikar, M., Newman, A.: Proofs of conjectures in Aggregating inconsistent information: Ranking and clustering. Technical Report TR-719-05, Department of Computer Science, Princeton University (2005)

    Google Scholar 

  3. Amit, N.: The bicluster graph editing problem. Master’s thesis, Tel Aviv University, School of Mathematical Sciences (2004)

    Google Scholar 

  4. Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Machine Learning 56(1–3), 89–113 (2004)

    Article  MATH  Google Scholar 

  5. Böcker, S., Briesemeister, S., Bui, Q.B.A., Truß, A.: PEACE: Parameterized and exact algorithms for cluster editing. Manuscript, Lehrstuhl für Bioinformatik, Friedrich-Schiller-Universität Jena (September 2007)

    Google Scholar 

  6. Dehne, F.K.H.A., Langston, M.A., Luo, X., Pitre, S., Shaw, P., Zhang, Y.: The cluster editing problem: Implementations and experiments. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 13–24. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)

    Google Scholar 

  8. Fellows, M.R., Langston, M.A., Rosamond, F.A., Shaw, P.: Efficient parameterized preprocessing for cluster editing. In: Csuhaj-Varjú, E., Ésik, Z. (eds.) FCT 2007. LNCS, vol. 4639, pp. 312–321. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006)

    Google Scholar 

  10. Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Graph-modeled data clustering: Exact algorithms for clique generation. Theory of Computing Systems 38(4), 373–392 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Guo, J.: A more effective linear kernelization for Cluster Editing. In: Chen, B., Paterson, M., Zhang, G. (eds.) ESCAPE 2007. LNCS, vol. 4614, pp. 36–47. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. Hsu, W., Ma, T.: Substitution decomposition on chordal graphs and applications. In: Hsu, W.-L., Lee, R.C.T. (eds.) ISA 1991. LNCS, vol. 557, pp. 52–60. Springer, Heidelberg (1991)

    Google Scholar 

  13. Hüffner, F., Komusiewicz, C., Moser, H., Niedermeier, R.: Fixed-parameter algorithms for cluster vertex deletion. In: Lin, G. (ed.) COCOON. LNCS, vol. 4598, pp. 711–722. Springer, Heidelberg (2007)

    Google Scholar 

  14. Hüffner, F., Niedermeier, R., Wernicke, S.: Fixed-parameter algorithms for graph-modeled data clustering. In: Clustering Challenges in Biological Networks, World Scientific, Singapore (to appear, 2008)

    Google Scholar 

  15. Křivánek, M., Morávek, J.: NP-hard problems in hierarchical-tree clustering. Acta Informatica 23(3), 311–323 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  16. Madeira, S.C., Oliveira, A.L.: Biclustering algorithms for biological data analysis: a survey. IEEE/ACM Transactions on Computational Biology and Bioinformatics 1(1), 24–45 (2004)

    Article  Google Scholar 

  17. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Mathematics and Its Applications, vol. 31. Oxford University Press, Oxford (2006)

    MATH  Google Scholar 

  18. Protti, F., da Silva, M.D., Szwarcfiter, J.L.: Applying modular decomposition to parameterized bicluster editing. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 1–12. Springer, Heidelberg (2006); To appear under the title “Applying modular decomposition to parameterized cluster editing problems” in Theory of Computing Systems.

    Chapter  Google Scholar 

  19. Shamir, R., Sharan, R., Tsur, D.: Cluster graph modification problems. Discrete Applied Mathematics 144(1–2), 173–182 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Tanay, A., Sharan, R., Shamir, R.: Biclustering algorithms: A survey. In: Aluru, S. (ed.) Handbook of Computational Molecular Biology, pp. 26–1 – 26–17. Chapman Hall/CRC Press (2006)

    Google Scholar 

  21. van Zuylen, A.Z., Williamson., D.P.: Deterministic algorithms for rank aggregation and other ranking and clustering problems. In: Proc. 5th WAOA. LNCS, Springer, Heidelberg (to appear, 2007)

    Google Scholar 

  22. van Zuylen, A.Z., Hegde, R., Jain, K., Williamson, D.P.: Deterministic pivoting algorithms for constrained ranking and clustering problems. In: Proc. 18th SODA, pp. 405–414. SIAM, Philadelphia (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Manindra Agrawal Dingzhu Du Zhenhua Duan Angsheng Li

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Guo, J., Hüffner, F., Komusiewicz, C., Zhang, Y. (2008). Improved Algorithms for Bicluster Editing. In: Agrawal, M., Du, D., Duan, Z., Li, A. (eds) Theory and Applications of Models of Computation. TAMC 2008. Lecture Notes in Computer Science, vol 4978. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79228-4_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79228-4_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79227-7

  • Online ISBN: 978-3-540-79228-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics