Skip to main content

Abstract

Ozone is a strong oxidant that can be used in the potabilization of surface or ground water as well as in wastewater treatment to remove microorganisms, inorganic ions and organic pollutants. The oldest use of ozone is as a biocide in drinking water potabilization. The integral ozone exposure required for a given degree of disinfection can be calculated from the deactivation kinetic constant of the microorganism. Ozone removes iron, manganese and arsenic from water by oxidation to an insoluble form that is further separated by filtration. Both processes require ozone in molecular form, but the removal of organic pollutants that are refractory to other treatments can be possible only by exploiting the indirect radical reactions that take place during ozonation. Ozone decomposes in water, especially when hydrogen peroxide is present, to yield the hydroxyl radical, the strongest oxidizer available in water treatment. Models for the ozonation process are required to adjust the ozone dosing to the desired degree of removal of a given pollutant or an aggregate measure of pollution. Mineralization, defined as the removal of organic carbon, has been accomplished in wastewaters from urban and domestic treatment plants. The results show that the logarithmic decrease of TOC as a function of the integral ozone exposure usually presents two zones with different kinetic parameters. Among advanced oxidation processes, a promising alternative currently under development is the use of ozone in combination with solid catalysts. The mechanism of catalytic ozonation is not clear, but in the case of metal oxides, the adsorption of ozone or organic compounds on Lewis acid sites is only possible near the point of zero charge of the surface. Activated carbon seems to behave as an initiator of ozone decomposition, a role that may also occur with other types of catalysts. Some results on the mineralization of water with the drugs naproxen (non-steroidal anti-inflammatory) and carbamazepine (anticonvulsant) are presented using titanium dioxide as catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

a:

Specific gas-liquid interfacial area [m−1]

Alk:

Alkalinity [mg CaCO3 L−1]

c A :

Concentration of a given compound [M]

\({C_{{O_3}}}\) :

Concentration of dissolved ozone in water [M]

\(C_{{O_3}}^*\) :

Equilibrium concentration of dissolved ozone in water [M]

c s :

Bulk concentration of catalyst [kgm−3]

c t :

Concentration of surface sites of catalyst [mol kg−1]

\(c{t_{{O_3}}},c{t_{10}}\) :

Concentration-time exposure parameter for ozone [M s]

d b :

Bubble diameter [m]

\({D_{{O_2}}}\) :

Diffusivity of oxygen [m2 s−1]

\({D_{{O_3}}}\) :

Diffusivity of ozone [m2 s−1]

E:

Enhancement factor

Ha:

Hatta number

H e :

Henry’s law constant [atm mole fraction−1]

i:

Ionic strength [M−1]

k 1, k 2 :

Rate constants for the catalytic decomposition of ozone [m3 kg−1 s−1]

k a :

Kinetic constant of adsorption [L kg −1cat s−1]

k −a :

Kinetic constant of desorption [mol kg −1cat s−1]

k c :

Kinetic constant of catalytic ozonation [L kg −1cat S−1]

k d :

Kinetic constant of ozone decomposition [units depending on the order of reaction]

k D, k Di :

Kinetic constants for direct reaction with ozone [L mol−1 s−1]

k HO. :

Kinetic constant for reactions with hydroxyl radical [L mol−1 s−1]

\({k_{H{O^ - }}}\) :

Kinetic constants of the hydroxide initiation of ozone decomposition [M−1 s−1]

\({k_{H{O_2}^ - }}\) :

Kinetic constants of the hydroperoxide initiation of ozone decomposition [M−1 s−1]

k L :

Liquid phase individual mass transfer coefficient [m s−1]

k L a :

Volumetric mass transfer coefficient [s−1]

k N :

Kinetic constant for microorganism deactivation [M−1 s−1]

k o :

Kinetic constant of the surface oxidation process [L kg −1cat S−1]

\({k_{{O_3}}}\) :

Kinetic constant for direct reaction with ozone [L mol−1 s−1]

k r :

Kinetic constant of termination reactions [L mol−1 s−1]

K a :

Adsorption equilibrium constant [L mol−1]

K ox :

Equilibrium constant for the surface oxidation process [L mol−1]

\({N_{{O_3}}}\) :

Absorption rate or flux of ozone [mol m−2 s−1]

pHPZC :

pH of the point of zero charge of a surface

\({P_{{O_3}}}\) :

Partial pressure of ozone in gas [Pa]

r d :

Rate of ozone decomposition [mol m−3 s−1]

R:

Kinetic constant for TOC removal during ozonation [L mol−1 s−1]

R ct :

Hydroxyl ozone ratio defined by Eq. 29

Sc:

Schmidt number [μLρ −1L \(D_{{O_3}}^{ - 1}\)]

TOC:

Total organic carbon [mg L−1]

TOCc :

Organic carbon refractory to ozonation [mg L−1]

TOC *c :

Organic carbon in oxalate, acetate and formiate [mg L−1]

TOCo :

Initial total organic carbon [mg L−1]

TOD:

Total ozone dose transferred [mol L−1]

u g :

Superficial gas velocity [m s−1]

X:

Ozone dose transfer at the beginning of the ozonation [mol L−1]

z:

Stoichiometric coefficient

ε g :

Gas holdup

μ L :

Liquid viscosity [kgm−1 s−1]

ρ L :

Liquid density [kgm−3]

σ L :

Surface tension [N m−1]

τ:

Hydraulic retention time [s]

θ:

Unit fraction of catalyst occupied sites

References

  1. Andreozzi R, Caprio V, Ermellino I, Insola A, Tufano V (1996) Ind Eng Chem Res 35:1467–1471

    CAS  Google Scholar 

  2. Rischbieter E, Stein H, Shumpe A (2000) J Chem Eng Data 45:338–340

    CAS  Google Scholar 

  3. Roth JA, Sullivan DE (1981) Ind Eng Chem Fundam 20:137–140

    CAS  Google Scholar 

  4. Sotelo JL, Beltran FJ, Benitez FJ, Beltran-Heredia J (1989) Water Res 23:1239–1246

    CAS  Google Scholar 

  5. Beltran FJ, García-Araya JF, Encinar JM (1997) Ozone Sci Eng 19:281–296

    CAS  Google Scholar 

  6. Charpentier JC (1981) Mass-transfer rates in gas-liquid absorbers and reactors. In: Drew TB, Cokelet GR, Hoopes HW Jr, Vermeulen T (eds) Advances in chemical engineering, vol 11. Academic, New York, pp 3–133

    Google Scholar 

  7. Danckwerts PV (1970) Gas-liquid reactions. McGraw-Hill, New York, p 113

    Google Scholar 

  8. Onda K, Sada E, Kobayashi T, Fujine M (1979) Chem Eng Sci 25:761–768

    Google Scholar 

  9. Beltran FJ, Encinar JM, García-Araya JF, Alonso MA (1992) Ozone Sci Eng 14:303–327

    CAS  Google Scholar 

  10. Poling BE, Prausnitz JM, O’Connell JP (2001) The properties of gases and liquids. McGraw-Hill, New York, p 25

    Google Scholar 

  11. Beltrán FJ (2004) Ozone reaction kinetics for water and wastewater systems. CRC, Boca Raton, pp 70–87

    Google Scholar 

  12. Chalmet S, Ruiz-López M (2006) J Chem Phys 124:1945

    Google Scholar 

  13. Buhler RE, Staehelin S, Hoigné J (1984) J Phys Chem 88:2560–2564

    Google Scholar 

  14. Staehelin S, Buhler RE, Hoigné J (1984) J Phys Chem 88:5999–6004

    CAS  Google Scholar 

  15. Tomiyasu H, Fukutomi H, Gordon G (1985) Inorg Chem 24:2962–2966

    CAS  Google Scholar 

  16. Hoigné J (1998) Chemistry of aqueous ozone and transformation of pollutants by ozone and advanced oxidation processes. In: Handbook of environmental chemistry, vol 5, part C. Quality and treatment of drinking water II. Springer, Berlin

    Google Scholar 

  17. Staehelin S, Hoigné J (1983) Vom Wasser 61:337–348

    CAS  Google Scholar 

  18. Kasprzyk-Hordern B, Ziolek M, Nawrocki J (2003) Appl Catal B Environ 46:639–669

    CAS  Google Scholar 

  19. Lin J, Kawai A, Nakajima T (2002) Appl Catal B Environ 39:157–165

    CAS  Google Scholar 

  20. Logemann FP, Annee JHJ (1997) Water Sci Technol 35:353–360

    CAS  Google Scholar 

  21. Sánchez-Polo M, von Gunten U, Rivera-Utrilla J (2005) Water Res 39:3189–3198

    Google Scholar 

  22. Rivera-Utrilla J, Sánchez-Polo M, Mondaca MA, Zaror CA (2002) J Chem Technol Biotechnol 77:883–890

    CAS  Google Scholar 

  23. von Gunten U (2003) Water Res 37:1443–1467

    Google Scholar 

  24. Elovitz MS, von Gunten U (1999) Ozone Sci Eng 21:239–260

    CAS  Google Scholar 

  25. Rosal R, Rodríguez A, Zerhouni M (2006) Appl Catal A Gen 305:169–175

    CAS  Google Scholar 

  26. Beenackers AACM, van Swaaij WPM (1993) Chem Eng Sci 48:3109–3139

    CAS  Google Scholar 

  27. Acero JL, von Gunten U (2001) J Am Water Works Assoc 93:99–100

    Google Scholar 

  28. Buffle MO, Schumacher J, Meylan S, Jekel M, Gunten U (2006) Ozone Sci Eng 28:245–249

    Google Scholar 

  29. Buffle MO, Schumacher J, Salhi E, Jekel M, Gunten U (2006) Water Res 40:1884–1894

    CAS  Google Scholar 

  30. Langlais B, Reckhow DA, Brink DR (1991) Ozone in water treatment: application and engineering. AWWA Research Foundation and Lewis, Denver

    Google Scholar 

  31. Sonntag C (2007) Water Sci Technol 55:19–23

    Google Scholar 

  32. Barreto R, Gray KA, Andres K (1995) Water Res 29:1243–1248

    CAS  Google Scholar 

  33. Albarran G, Schuler RH (2005) J Phys Chem A 109:9363–9370

    CAS  Google Scholar 

  34. Palmisano G, Addamo M, Augugliaro V, Caronna T, Paola A, García E, Loddo V, Marci G, Palmisano L, Schiavello M (2007) Catal Today 122:118–127

    CAS  Google Scholar 

  35. Fang X, Schuchmann HP, Sonntag J (2000) J Chem Soc Perkin Trans 2 1391–1398

    Google Scholar 

  36. Legube B, Karpel N (1999) Catal Today 53:61–72

    CAS  Google Scholar 

  37. Sallanko J, Lakso E, Röpelinen J (2006) Ozone Sci Eng 28:269–273

    CAS  Google Scholar 

  38. Langlais B, Reckhow DA, Brink DR (eds) (1991) Ozone in drinking water treatment: application and engineering. AWWARF and Lewis, Boca Raton

    Google Scholar 

  39. Ramírez F (2005) Tratamiento de desinfección de agua potable. Canal de Isabel II, Madrid, p 9

    Google Scholar 

  40. Viraraghavan T, Subramanian KS, Aruldoss JA (1999) Water Sci Technol 40:69–76

    CAS  Google Scholar 

  41. Nishimura T, Umetsu Y (2001) Hydrometallurgy 62:83–92

    CAS  Google Scholar 

  42. Kim MJ, Nriagu J (2000) Sci Total Environ 247:71–79

    CAS  Google Scholar 

  43. von Gunten U (2003) Water Res 37:1469–1487

    Google Scholar 

  44. USEPA (1989) National primary drinking water regulations: final rules 54:27485–27541

    Google Scholar 

  45. von Gunten U, Elovitz MS, Kaiser HP (1999) J Water Supply Aqua 48:250

    Google Scholar 

  46. Do-Quang Z, Roustan M, Duguet JP (2000) Ozone Sci Eng 22:99–111

    CAS  Google Scholar 

  47. Xu P, Janex ML, Savoye P, Cockx A, Lazarova V (2002) Water Res 36:1043–1055

    CAS  Google Scholar 

  48. Camel V, Bermond A (1998) Water Res 32:3280–3222

    Google Scholar 

  49. Rice RP (1999) Ozone Sci Eng 21:99–118

    CAS  Google Scholar 

  50. Larocque RL (1999) Ozone Sci Eng 21:119–125

    CAS  Google Scholar 

  51. Matsumoto N, Watanable K (1999) Ozone Sci Eng 21:127–138

    CAS  Google Scholar 

  52. Kruithof CJ, Masschelin W (1999) Ozone Sci Eng 21:139–152

    CAS  Google Scholar 

  53. Paulose J, Langlais B (1999) Ozone Sci Eng 21:153–162

    Google Scholar 

  54. Böhme A (1999) Ozone Sci Eng 21:163–176

    Google Scholar 

  55. Pollo I (1999) Ozone Sci Eng 21:177–186

    CAS  Google Scholar 

  56. Geering F (1999) Ozone Sci Eng 21:1187–1200

    Google Scholar 

  57. Lowndes R (1999) Ozone Sci Eng 21:201–205

    CAS  Google Scholar 

  58. Haag WR, Hoigné J (1985) Chemosphere 14:1569–1671

    Google Scholar 

  59. Hoigné J (1997) Water Sci Technol 35:1–8

    Google Scholar 

  60. Yurteri C, Gurol DM (1988) Ozone Sci Eng 10:277–290

    CAS  Google Scholar 

  61. Glaze WH, Kang J-W (1989) Ind Eng Chem Res 28:1573–1580

    CAS  Google Scholar 

  62. Glaze WH, Kang J-W (1989) Ind Eng Chem Res 28:1580–1587

    CAS  Google Scholar 

  63. Beltran FJ, Rivas J, Alvarez PM, Alonso MA (1999) Ind Eng Chem Res 38:4189–4199

    CAS  Google Scholar 

  64. Legube B (2003) Ozonation by-products. In: Handbook of environmental chemistry, vol 5, part G. Springer, Berlin, pp 95–116

    Google Scholar 

  65. Andreozzi R, Insola A, Caprio V, D’Amore MG (1992) Water Res 26:917–925

    CAS  Google Scholar 

  66. Andreozzi R, Marotta R, Sanchirico R (2000) J Chem Technol Biotechnol 75:59–65

    CAS  Google Scholar 

  67. Beltrán FJ, Rivas FJ, Montero R (2002) Appl Catal B Environ 39:221–231

    Google Scholar 

  68. Beltrán FJ, Rivas FJ, Montero R (2003) J Chem Technol Biotechnol 78:1225–1233

    Google Scholar 

  69. Beltrán FJ, Rivas FJ, Montero R (2005) Water Res 39:3553–3564

    Google Scholar 

  70. Rivera-Utrilla J, Sánchez-Polo M (2002) Appl Catal B Environ 39:319–329

    CAS  Google Scholar 

  71. Faria PCC, Órfao JJM, Pereira MFR (2005) Water Res 39:1461–1470

    CAS  Google Scholar 

  72. Andreozzi R, Casale MS, Marotta R, Pinto G, Pollio A (2000) Water Res 34:4419–4429

    CAS  Google Scholar 

  73. Gracia R, Cortes S, Sarasa J, Ormad P, Ovelleiro JL (2000) Water Res 34:1525–1532

    CAS  Google Scholar 

  74. Ma J, Graham NJD (1999) Water Res 33:785–793

    CAS  Google Scholar 

  75. Lin J, Nakajima T, Jomoto T, Hiraiwa K (1999) Ozone Sci Eng 21:241–247

    Google Scholar 

  76. Karpel N, Delouane B, Legube B, Luck F (1999) Ozone Sci Eng 21:261–276

    Google Scholar 

  77. Fu H, Karpel N, Legube B (2002) New J Chem 26:1662–1666

    CAS  Google Scholar 

  78. Hewes CG, Davinson RR (1972) Water AIChE Symp Ser 70:69–71

    Google Scholar 

  79. Gracia R, Aragües JL, Cortés S, Ovelleiro JL (1996) Ozone Sci Eng 18:195–208

    CAS  Google Scholar 

  80. Piera E, Calpe JC, Brillas E, Domenech X, Peral J (2000) Appl Catal B Environ 27:169–177

    CAS  Google Scholar 

  81. Nowell LH, Hoigné J (1987) Interaction of iron(II) and other transition metals with aqueous ozone, 8th Ozone World Congress, Zurich, September 1987, p E80

    Google Scholar 

  82. Neyens E, Baeyens JH (2003) J Hazard Mater B29:33–50

    Google Scholar 

  83. Pines DS, Reckhow DA (2002) Environ Sci Technol 36:4046–4051

    CAS  Google Scholar 

  84. Dhandapani B, Oyama ST (1997) Appl Catal B Environ 11:129–166

    CAS  Google Scholar 

  85. Bulanin KM, Lavalley JC, Tsyganenko AA (1995) Colloids Surf A 101:153–158

    CAS  Google Scholar 

  86. Fernandez P, Nieves FJDL, Malato S (2000) J Colloid Interface Sci 227:510–516

    Google Scholar 

  87. Zhaobin W, Xienian G, Sham EL, Grange P, Delmon B (1990) Appl Catal 63:305–317

    Google Scholar 

  88. Kasprzyk-Hordern B (2004) Adv Colloid Interface Sci 110:19–48

    CAS  Google Scholar 

  89. Beltrán FJ, Rivas FJ, Monterio R (2004) Appl Catal B Environ 47:101–109

    Google Scholar 

  90. Vannice MA (2007) Catal Today 123:18–22

    CAS  Google Scholar 

  91. Agustina TE, Ang HM, Vareek VK (2005) J Photochem Photobiol C Photochem Rev 6:264–273

    CAS  Google Scholar 

  92. Moraes SG, Freire RS, Duran N (2000) Chemosphere 40:369–373

    Google Scholar 

  93. Kusic H, Koprivanac N, Bozic AL (2006) Chem Eng J 123:127–137

    CAS  Google Scholar 

  94. Ciardelli G, Ranieri N (2001) Water Res 35:567–572

    CAS  Google Scholar 

  95. Li L, Zhu W, Zhang P, Zhang Q, Zhang Z (2006) J Hazard Mater 128:145–149

    CAS  Google Scholar 

  96. Bijan L, Mohsein M (2005) Water Res 39:3763–3772

    CAS  Google Scholar 

  97. Amat AM, Arques A, Miranda MA, López F (2005) Chemosphere 60:1111–1117

    CAS  Google Scholar 

  98. Fernández J, Riu J, García-Calvo E, Rodríguez A, Fernández-Alba AR, Barceló D (2004) Talanta 64:69–79

    Google Scholar 

  99. Chiron S, Fernández-Alba AR, Rodríguez A, García-Calvo E (2000) Water Res 34:366–377

    CAS  Google Scholar 

  100. Hernando MD, Petrovic M, Radjenovic J, Fernández-Alba AR, Barceló D (2007) Removal of pharmaceuticals by advanced treatment technologies. In: Petrovic M, Barceló D (eds) Analysis, fate and removal of pharmaceuticals in the water cycle. Elsevier Science Ltd., Oxford, UK

    Google Scholar 

  101. Gómez MJ, Martínez Bueno MJ, Lacorte S, Fernández-Alba AR, Agüera A (2007) Chemosphere 66:993–1002

    Google Scholar 

  102. Hernando MD, Mezcua M, Fernández-Alba AR, Barceló D (2006) Talanta 69:334–342

    CAS  Google Scholar 

  103. Zuccato E, Castiglioni S, Fanelli RE (2005) J Hazard Mater 122:205–209

    CAS  Google Scholar 

  104. Carballa M, Omil F, Lema JM, Llompart M, García-Jares C, Rodríguez I, Gómez M, Ternes TA (2004) Water Res 38:2918–2926

    CAS  Google Scholar 

  105. Hernando MD, Ferrer I, Agüera A, Fernández-Alba AR (2004) In: Barcelo D (ed) Emerging organic pollutants in waste waters and sludge. Springer, Berlin, pp 53–77

    Google Scholar 

  106. Bendz D, Paxeus NA, Ginn TR, Loge FJ (2005) J Hazard Mater 122:195–204

    CAS  Google Scholar 

  107. Bound JP, Voulvoulis N (2004) Chemosphere 56:1143–1155

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Fernández-Alba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rodríguez, A. et al. (2008). Ozone-Based Technologies in Water and Wastewater Treatment. In: Barceló, D., Petrovic, M. (eds) Emerging Contaminants from Industrial and Municipal Waste. The Handbook of Environmental Chemistry, vol 5 / 5S / 5S/2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79210-9_4

Download citation

Publish with us

Policies and ethics