Advertisement

Combinatorial View of Digital Convexity

  • Srečko Brlek
  • Jacques-Olivier Lachaud
  • X. Provençal
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4992)

Abstract

The notion of convexity translates non-trivially from Euclidean geometry to discrete geometry, and detecting if a discrete region of the plane is convex requires analysis. In this paper we study digital convexity from the combinatorics on words point of view, and provide a fast optimal algorithm checking digital convexity of polyominoes coded by the contour word. The result is based on the Lyndon factorization of the contour word, and the recognition of Christoffel factors that are approximations of digital lines.

Keywords

Digital Convexity Lyndon words Christoffel words 

References

  1. 1.
    Sklansky, J.: Recognition of convex blobs. Pattern Recognition 2(1), 3–10 (1970)CrossRefGoogle Scholar
  2. 2.
    Minsky, M., Papert, S.: Perceptrons, 2nd edn. MIT Press, Cambridge (1988)zbMATHGoogle Scholar
  3. 3.
    Kim, C.: On the cellular convexity of complexes. Pattern Analysis and Machine Intelligence 3(6), 617–625 (1981)Google Scholar
  4. 4.
    Kim, C.: Digital convexity, straightness, and convex polygons. Pattern Analysis and Machine Intelligence 4(6), 618–626 (1982)zbMATHCrossRefGoogle Scholar
  5. 5.
    Kim, C., Rosenfeld, A.: Digital straight lines and convexity of digital regions. Pattern Analysis and Machine Intelligence 4(2), 149–153 (1982)zbMATHGoogle Scholar
  6. 6.
    Chaudhuri, B., Rosenfeld, A.: On the computation of the digital convex hull and circular hull of a digital region. Pattern Recognition 31(12), 2007–2016 (1998)CrossRefGoogle Scholar
  7. 7.
    Klette, R., Rosenfeld, A.: Digital straightness—a review. Discrete Appl. Math. 139(1-3), 197–230 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Debled-Rennesson, I., Rémy, J.-L., Rouyer-Degli, J.: Detection of the discrete convexity of polyominoes. Discrete Appl. Math. 125(1), 115–133 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Feschet, F., Tougne, L.: Optimal Time Computation of the Tangent of a Discrete Curve: Application to the Curvature. In: Bertrand, G., Couprie, M., Perroton, L. (eds.) DGCI 1999. LNCS, vol. 1568, pp. 31–40. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  10. 10.
    Lachaud, J.O., Vialard, A., de Vieilleville, F.: Fast, accurate and convergent tangent estimation on digital contours. Image and Vision Computing 25, 1572–1587 (2007)CrossRefGoogle Scholar
  11. 11.
    Brlek, S., Labelle, G., Lacasse, A.: Incremental Algorithms Based on Discrete Green Theorem. In: Nyström, I., Sanniti di Baja, G., Svensson, S. (eds.) DGCI 2003. LNCS, vol. 2886, pp. 277–287. Springer, Heidelberg (2003)Google Scholar
  12. 12.
    Brlek, S., Labelle, G., Lacasse, A.: Algorithms for polyominoes based on the discrete Green theorem. Discrete Applied Math 147(3), 187–205 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Brlek, S., Labelle, G., Lacasse, A.: On minimal moment of inertia polyominoes. In: Coeurjolly, D., et al. (eds.) DGCI 2008. LNCS, vol. 4992, Springer, Heidelberg (2008)Google Scholar
  14. 14.
    Brlek, S., Labelle, G., Lacasse, A.: A Note on a Result of Daurat and Nivat. In: De Felice, C., Restivo, A. (eds.) DLT 2005. LNCS, vol. 3572, pp. 189–198. Springer, Heidelberg (2005)Google Scholar
  15. 15.
    Brlek, S., Labelle, G., Lacasse, A.: Properties of the contour path of discrete sets. Int. J. Found. Comput. Sci. 17(3), 543–556 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Daurat, A., Nivat, M.: Salient and reentrant points of discrete sets. In: del Lungo, A., di Gesu, V., Kuba, A. (eds.) Proc. IWCIA 2003, Int. Workshop on Combinatorial Image Analysis, Palermo, Italia, May 14–16. Electronic Notes in Discrete Mathematics, Elsevier Science, Amsterdam (2003)Google Scholar
  17. 17.
    Brlek, S., Labelle, G., Lacasse, A.: Shuffle operations on lattice paths. In: Rigo, M. (ed.) Proc. CANT 2006, Int. School and Conf. on Combinatorics, Automata and Number theory, Liège, Belgium, May 8–19, pp. 8–19. University of Liège (2006)Google Scholar
  18. 18.
    Brlek, S., Labelle, G., Lacasse, A.: Shuffle operations on discrete paths. In: Theoret. Comput. Sci. (in press, 2007)Google Scholar
  19. 19.
    Brlek, S., Provençal, X.: An Optimal Algorithm for Detecting Pseudo-squares. In: Kuba, A., Nyúl, L.G., Palágyi, K. (eds.) DGCI 2006. LNCS, vol. 4245, pp. 403–412. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  20. 20.
    Brlek, S., Fédou, J.-M., Provençal, X.: On the tiling by translation problem. Discrete Applied Math. (to appear, 2008)Google Scholar
  21. 21.
    Lothaire, M.: Combinatorics on words. In: Cambridge Mathematical Library, Cambridge University Press, Cambridge (1997)Google Scholar
  22. 22.
    Lothaire, M.: Algebraic combinatorics on words. Encyclopedia of Mathematics and its Applications, vol. 90. Cambridge University Press, Cambridge (2002)zbMATHGoogle Scholar
  23. 23.
    Lothaire, M.: Applied combinatorics on words. Encyclopedia of Mathematics and its Applications, vol. 105. Cambridge University Press, Cambridge (2005)zbMATHGoogle Scholar
  24. 24.
    Duval, J.P.: Factorizing words over an ordered alphabet. J. Algorithms 4(4), 363–381 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Christoffel, E.B.: Observatio arithmetica. Annali di Mathematica 6, 145–152 (1875)Google Scholar
  26. 26.
    Borel, J.P., Laubie, F.: Quelques mots sur la droite projective réelle. J. Théor. Nombres Bordeaux 5(1), 23–51 (1993)zbMATHMathSciNetGoogle Scholar
  27. 27.
    Berstel, J., de Luca, A.: Sturmian words, Lyndon words and trees. Theoret. Comput. Sci. 178(1-2), 171–203 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Reveillès, J.P.: Géométrie discrète, calcul en nombres entiers et algorithmique. PhD thesis, Université Louis Pasteur, Strasbourg (December 1991)Google Scholar
  29. 29.
    Fredricksen, H., Maiorana, J.: Necklaces of beads in k colors and k-ary de Bruijn sequences. Discrete Math. 23(3) (1978) 207–210zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Provençal, X.: Combinatoire des mots, pavages et géométrie discrète. PhD thesis, Université du Québec à Montréal, Montréal (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Srečko Brlek
    • 1
  • Jacques-Olivier Lachaud
    • 2
  • X. Provençal
    • 1
  1. 1.Laboratoire de Combinatoire et d’Informatique MathématiqueUniversité du Québec à MontréalMontréalCanada
  2. 2.Laboratoire de Mathématiques, UMR 5127 CNRSUniversité de SavoieLe Bourget du LacFrance

Personalised recommendations