About the Frequencies of Some Patterns in Digital Planes Application to Area Estimators

  • Alain Daurat
  • Mohamed Tajine
  • Mahdi Zouaoui
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4992)


In this paper we prove that the function giving the frequency of a class of patterns of digital planes with respect to the slopes of the plane is continuous and piecewise affine, moreover the regions of affinity are precised. It allows to prove some combinatorial properties of a class of patterns called (m,n)-cubes. This study has also some consequences on local estimators of area: we prove that the local estimators restricted to regions of plane never converge to the exact area when the resolution tends to zero for almost all slope of plane. Actually all the results of this paper can be generalized for the regions of hyperplanes for any dimension d ≥ 3.

The proofs of some results used in this article are contained in the extended version of this paper [1].


Digital Plane Pattern (m;n)-cube Area Estimator Local Estimator Multigrid Convergence 


  1. 1.
    Daurat, A., Tajine, M., Zouaoui, M.: About the frequencies of some patterns in digital planes. Application to area estimators - extended version (preprint, 2007),
  2. 2.
    Forchhammer, S.: Digital plane and grid point segments. Comput. Vis. Graph. Image Process 47, 373–384 (1989)CrossRefGoogle Scholar
  3. 3.
    Françon, J., Schramm, J.M., Tajine, M.: Recognizing arithmetic straight lines and planes. In: Miguet, S., Ubéda, S., Montanvert, A. (eds.) DGCI 1996. LNCS, vol. 1176, pp. 141–150. Springer, Heidelberg (1996)Google Scholar
  4. 4.
    Schramm, J.M.: Coplanar tricubes. In: Ahronovitz, E. (ed.) DGCI 1997. LNCS, vol. 1347, pp. 87–98. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  5. 5.
    Reveillès, J.P.: Combinatorial pieces in digital lines and planes. In: Proc. SPIE Vision Geometry IV, vol. 2573, pp. 23–34 (1995)Google Scholar
  6. 6.
    Gérard, Y.: Contribution à la Géométrie Discrète. PhD thesis, Université d’Auvergne, Clermont-Ferrand (1999)Google Scholar
  7. 7.
    Gérard, Y.: Local Configurations of Digital Hyperplanes. In: Bertrand, G., Couprie, M., Perroton, L. (eds.) DGCI 1999. LNCS, vol. 1568, pp. 65–95. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  8. 8.
    Vittone, J., Chassery, J.M. (n,m)-Cubes and Farey Nets for Naive Planes Understanding. In: Bertrand, G., Couprie, M., Perroton, L. (eds.) DGCI 1999. LNCS, vol. 1568, pp. 76–90. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  9. 9.
    Vittone, J.: Caractérisation et reconnaissance de droites et de plans en géométrie discrète. PhD thesis, Université Joseph Fourier, Grenoble (1999)Google Scholar
  10. 10.
    Vuillon, L.: Combinatoire des motifs d’une suite sturmienne bidimensionnelle. Theoret. Comput. Sci. 209, 261–285 (1998)CrossRefMathSciNetzbMATHGoogle Scholar
  11. 11.
    Vuillon, L.: Local configurations in a discrete plane. Bull. Belg. Math. Soc. Simon Stevin 6(4), 625–636 (1999)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Brimkov, V.E., Andres, E., Barneva, R.P.: Object discretizations in higher dimensions. Pattern Recogn. Lett. 23(6), 623–636 (2002)CrossRefzbMATHGoogle Scholar
  13. 13.
    Veelaert, P.: Digital planarity of rectangular surface segments. IEEE Trans. Pattern Anal. Mach. Intell. 16(6), 647–652 (1994)CrossRefGoogle Scholar
  14. 14.
    Brimkov, V., Coeurjolly, D., Klette, R.: Digital planarity - a review. Discrete Appl. Math. 155(4), 468–495 (2007)CrossRefMathSciNetzbMATHGoogle Scholar
  15. 15.
    Lindblad, J.: Surface area estimation of digitized 3d objects using weighted local configurations. Image Vis. Comput. 23(2), 111–122 (2005)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Kenmochi, Y., Klette, R.: Surface area estimation for digitized regular solids. In: Proc. SPIE, Vision Geometry IX, vol. 4117, pp. 100–111 (2000)Google Scholar
  17. 17.
    Tajine, M., Daurat, A.: On Local Definitions of Length of Digital Curves. In: Nyström, I., Sanniti di Baja, G., Svensson, S. (eds.) DGCI 2003. LNCS, vol. 2886, pp. 114–123. Springer, Heidelberg (2003)Google Scholar
  18. 18.
    Coeurjolly, D., Sivignon, I., Dupont, F., Feschet, F., Chassery, J.M.: On digital plane preimage structure. Discrete Appl. Math. 151(1-3), 78–92 (2005)CrossRefMathSciNetzbMATHGoogle Scholar
  19. 19.
    Berthé, V., Fiorio, C., Jamet, D., Philippe, F.: On some applications of generalized functionality for arithmetic discrete planes. Image Vis. Comput. 25(10), 1671–1684 (2007)CrossRefGoogle Scholar
  20. 20.
    Berenstein, C., Lavine, D.: On the number of digital straight line segments. IEEE Trans. On Pattern Analysis and Machine Intelligence 10(6), 880–887 (1988)CrossRefzbMATHGoogle Scholar
  21. 21.
    Mignosi, F.: On the number of factors of Sturmian words. Theoret. Comput. Sci. 82(1), 71–84 (1991)CrossRefMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Alain Daurat
    • 1
  • Mohamed Tajine
    • 1
  • Mahdi Zouaoui
    • 1
  1. 1.LSIIT CNRS UMR 7005Université Louis Pasteur (Strasbourg 1)Illkirch-GraffenstadenFrance

Personalised recommendations