Generation and Recognition of Digital Planes Using Multi-dimensional Continued Fractions

  • Thomas Fernique
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4992)

Abstract

This paper extends, in a multi-dimensional framework, pattern recognition technics for generation or recognition of digital lines. More precisely, we show how the connection between chain codes of digital lines and continued fractions can be generalized by a connection between tilings and multi-dimensional continued fractions. This leads to a new approach for generating and recognizing digital hyperplanes.

References

  1. 1.
    Andres, E.: Le plan discret. In: Proc. of Discrete Geometry for Computer Imagery DGCI 1993, pp. 45–61 (1993)Google Scholar
  2. 2.
    Arnoux, P., Ito, S.: Pisot substitutions and Rauzy fractals. Bull. Bel. Math. Soc. Simon Stevin 8, 181–207 (2001)MathSciNetMATHGoogle Scholar
  3. 3.
    Berthé, V., Fernique, Th.: Brun expansions of stepped surfaces (preprint, 2008)Google Scholar
  4. 4.
    Brimkov, V., Cœ, D.: Computational aspects of Digital plane and hyperplane recognition. In: Reulke, R., Eckardt, U., Flach, B., Knauer, U., Polthier, K. (eds.) IWCIA 2006. LNCS, vol. 4040, pp. 543–562. Springer, Heidelberg (2006)Google Scholar
  5. 5.
    Chazelle, B.: An optimal algorithm for intersecting three-dimensional convex polyhedra. SIAM J. Comput. 21, 671–696 (1992)CrossRefMathSciNetMATHGoogle Scholar
  6. 6.
    Ei, H.: Some properties of invertible substitutions of rank d and higher dimensional substitutions. Osaka Journal of Mathematics 40, 543–562 (2003)MathSciNetMATHGoogle Scholar
  7. 7.
    Françon, J.: Discrete combinatorial surfaces. Graphical Models & Image Processing 57, 20–26 (1995)CrossRefGoogle Scholar
  8. 8.
    Klette, R., Rosenfeld, A.: Digital straightness–a review. Elec. Notes in Theoret. Comput. Sci, vol. 46 (2001)Google Scholar
  9. 9.
    Réveillès, J.-P.: Calcul en nombres entiers et algorithmique, Ph. D Thesis, Univ. Louis Pasteur, Strasbourg (1991)Google Scholar
  10. 10.
    Schweiger, F.: Multi-dimensional continued fractions. Oxford Science Publications, Oxford Univ. Press, Oxford (2000)Google Scholar
  11. 11.
    Troesch, A.: Interprétation géométrique de l’algorithme d’Euclide et reconnaissance de segments. Theor. Comput. Sci. 115, 291–320 (1993)CrossRefMathSciNetMATHGoogle Scholar
  12. 12.
    Vuillon, L.: Combinatoire des motifs d’une suite sturmienne bidimensionelle. Theoret. Comput. Sci. 209, 261–285 (1998)CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Thomas Fernique
    • 1
  1. 1.LIRMMUniv. Montpellier 2MontpellierFrance

Personalised recommendations