Skip to main content

First Results for 3D Image Segmentation with Topological Map

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNIP,volume 4992)

Abstract

This paper presents the first segmentation operation defined within the 3D topological map framework. Firstly we show how a traditional segmentation algorithm, found in the literature, can be transposed on a 3D image represented by a topological map. We show the consistency of the results despite of the modifications made to the segmentation algorithm and we study the complexity of the operation. Lastly, we present some experimental results made on 3D medical images. These results show the process duration of this method and validate the interest to use 3D topological map in the context of image processing.

Keywords

  • Topological model
  • 3D Image segmentation
  • Intervoxel boundaries
  • Combinatorial maps

Partially supported by the ANR program ANR-06-MDCA-008-05/FOGRIMMI.

References

  1. Rosenfeld, A.: Adjacency in digital pictures. Information and Control 26, 24–33 (1974)

    CrossRef  MathSciNet  Google Scholar 

  2. Kropatsch, W.G., Macho, H.: Finding the structure of connected components using dual irregular pyramids. In: Discrete Geometry for Computer Imagery, pp. 147–158 (September 1995) (invited lecture)

    Google Scholar 

  3. Bertrand, Y., Damiand, G., Fiorio, C.: Topological map: Minimal encoding of 3d segmented images. In: Workshop on Graph-Based Representations in Pattern Recognition, Ischia, Italy, IAPR-TC15, pp. 64–73 (May 2001)

    Google Scholar 

  4. Braquelaire, J.P., Domenger, J.P.: Representation of segmented images with discrete geometric maps. Image and Vision Computing 17(10), 715–735 (1999)

    CrossRef  Google Scholar 

  5. Damiand, G., Bertrand, Y., Fiorio, C.: Topological model for two-dimensional image representation: definition and optimal extraction algorithm. Computer Vision and Image Understanding 93(2), 111–154 (2004)

    CrossRef  Google Scholar 

  6. Fiorio, C.: A topologically consistent representation for image analysis: the frontiers topological graph. In: Miguet, S., Ubéda, S., Montanvert, A. (eds.) DGCI 1996. LNCS, vol. 1176, pp. 151–162. Springer, Heidelberg (1996)

    Google Scholar 

  7. Braquelaire, J.P., Brun, L.: Image segmentation with topological maps and inter-pixel representation. Journal of Visual Communication and Image Representation 9(1), 62–79 (1998)

    CrossRef  Google Scholar 

  8. Haxhimusa, Y., Ion, A., Kropatsch, W.G., Brun, L.: Hierarchical image partitioning using combinatorial maps. In: Hanbury, A., Bischof, H. (eds.) 10th Computer Vision Winter Workshop, pp. 43–52 (February 2005)

    Google Scholar 

  9. Damiand, G., Resch, P.: Split and merge algorithms defined on topological maps for 3d image segmentation. Graphical Models 65(1-3), 149–167 (2003)

    MATH  CrossRef  Google Scholar 

  10. Felzenszwalb, P.F., Huttenlocher, D.P.: Image segmentation using local variation. In: Computer Vision and Pattern Recognition, 1998. Proceedings. IEEE Computer Society Conference on, June 1998, pp. 98–104 (1998)

    Google Scholar 

  11. Lienhardt, P.: Topological models for boundary representation: a comparison with n-dimensional generalized maps. Computer-Aided Design 23, 59–82 (1991)

    MATH  Google Scholar 

  12. Khalimsky, E., Kopperman, R., Meyer, P.R.: Boundaries in digital planes. Journal of Applied Mathematics and Stochastic Analysis 3(1), 27–55 (1990)

    MATH  CrossRef  MathSciNet  Google Scholar 

  13. Damiand, G.: Définition et étude d’un modèle topologique minimal de représentation d’images 2d et 3d. Thèse de doctorat, Université Montpellier II (Décembre 2001)

    Google Scholar 

  14. Dupas, A., Damiand, G.: Comparison of local and global region merging in the topological map. In: BrimKov, V.E., et al. (eds.) IWCIA 2008, vol. 4958, pp. 420–431. Springer, Heidelberg (2008)

    Google Scholar 

  15. Cormen, T.H., Leiserson, C.E., Rivest, R.: Introduction to Algorithms. MIT Press, Cambridge (1990)

    Google Scholar 

  16. Tarjan, R.: Efficiency of a good but not linear set union algorithm. Journal of the ACM 22, 215–225 (1975)

    MATH  CrossRef  MathSciNet  Google Scholar 

  17. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. International Journal of Computer Vision 59(2), 167–181 (2004)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dupas, A., Damiand, G. (2008). First Results for 3D Image Segmentation with Topological Map. In: Coeurjolly, D., Sivignon, I., Tougne, L., Dupont, F. (eds) Discrete Geometry for Computer Imagery. DGCI 2008. Lecture Notes in Computer Science, vol 4992. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79126-3_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79126-3_45

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79125-6

  • Online ISBN: 978-3-540-79126-3

  • eBook Packages: Computer ScienceComputer Science (R0)