A Discrete Modelling of Soil Fragments Transport by Runoff

  • Gilles Valette
  • Stéphanie Prévost
  • Laurent Lucas
  • Joël Léonard
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4992)

Abstract

We aim to model and visualize the evolution of the surface structure of a cultivated soil surface during rainfall. In this paper, we briefly present our model, based on an Extended Cellular Automaton, and the different simulated processes. Among these processes, we focus on runoff which is of high relevance as it drives the evolution of the soil surface structure by transporting and depositing the detached fragments of soil and thus inducing an evolution in the granulometry of the surface material. We propose a simple algorithm to model, in a discrete way, runoff and also the transport and deposition of soil fragments according to their size. In that way we are able to derive information about the evolution of soil surface granulometry. A validation of the runoff model is proposed, based on the comparison of the results obtained with results from a numerical solution of the Saint Venant’s equations. Although no validation was attempted for transport, simulations yielded visually promising results.

Keywords

Debris Flow Soil Erosion Cellular Automaton Hydraulic Head Cellular Automaton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Hamblin, A.P.: The Influence of Soil Structure on Water Movement, Crop Root Growth, and Water Uptake. Advances in Agronomy 38, 95–158 (1985)Google Scholar
  2. 2.
    Baranowski, R., Bakowski, B.: The Influence of Differentiated Soil Structure on Temperature Dynamics. Roczniki Gleboznawcze 28(1), 37–44 (1977)Google Scholar
  3. 3.
    Valette, G., Prevost, S., Lucas, L.: Modeling and visualization of cracks in a desiccating soil. In: 11th International Fall Workshop Vision, Modeling, and Visualization, Aachen, Germany, pp. 177–184. Aka Verlag, Berlin (2006)Google Scholar
  4. 4.
    Le Bissonnais, Y., Bruand, A.: Crust Micromorphology and Runoff Generation on Silty Soil Materials During Different Seasons. Catena Supplement (24), 1–16 (1993)Google Scholar
  5. 5.
    Valette, G., Prévost, S., Lucas, L., Léonard, J.: SoDA Project: a Simulation of Soil Surface Degradation by Rainfall. Computers & Graphics 30(4), 494–506 (2006)CrossRefGoogle Scholar
  6. 6.
    Zhang, W., Cundy, T.W.: Modeling of two-dimensional overland flow. Water Resources Research 25, 2019–2035 (1989)CrossRefGoogle Scholar
  7. 7.
    Musgrave, F.K., Kolb, C.E., Mace, R.S.: The Synthesis and Rendering of Eroded Fractal Terrains. In: Proceedings of the 16Th Annual Conference on Computer Graphics and Interactive Techniques, pp. 41–50. ACM Press, New York (1989)CrossRefGoogle Scholar
  8. 8.
    Beneš, B., Forsbach, R.: Layered Data Representation for Visual Simulation of Terrain Erosion. EEE Proceedings of SCCG 25(4), 80–86 (2001)Google Scholar
  9. 9.
    Beneš, B., Forsbach, R.: Visual Simulation of Hydraulic Erosion. Journal of Winter School of Computer Graphics 10, 79–94 (2002)Google Scholar
  10. 10.
    Chiba, N., Muraoka, K., Fujita, K.: An Erosion Model Based on Velocity Fields for the Visual Simulation of Mountain Scenery. The Journal of Visualization and Computer Animation 9, 185–194 (1998)CrossRefGoogle Scholar
  11. 11.
    Neidhold, B., Wacker, M., Deussen, O.: Interactive Physically Based Fluid and Erosion Simulation. In: Galin, E., Poulin, P. (eds.) Eurographics Workshop on Natural Phenomena, pp. 25–32 (Dublin) (2005)Google Scholar
  12. 12.
    Beneš, B., Těšínský, V., Hornyš, J., Bhatia, S.: Hydraulic erosion. Computer Animation and Virtual Worlds 17(2), 99–108 (2006)CrossRefGoogle Scholar
  13. 13.
    Beneš, B.: Hydraulic Erosion by Shallow Water Simulation. In: The 4th Workshop on Virtual Reality Interaction and Physical Simulation - Vriphys (2007) (to appear)Google Scholar
  14. 14.
    Mei, X., Decaudin, P., Hu, B.: Fast Hydraulic Erosion Simulation and Visualization on GPU. In: Pacific Graphics (2007) (to appear)Google Scholar
  15. 15.
    Lane, L., Nearing, M.: USDA - Water Erosion Prediction Project: Hillslope Model. Technical Report 2, USDA-ARS National Soil Erosion Research Laboratory, NSERL, West Lafayette, Indiana, USA (1989)Google Scholar
  16. 16.
    Morgan, R., Quinton, J., Smith, R., Govers, G., Poesen, J., Auerswald, K., Chisci, G., Torri, D., Styczen, M.: The European Soil Erosion Model (EUROSEM): a Dynamic Approach for Predicting Sediment Transport from Fields and Small Catchments. Earth Surface Processes and Landforms 23(6), 527–544 (1998)CrossRefGoogle Scholar
  17. 17.
    Favis-Mortlock, D., Boardman, J., Parsons, A., Lascelles, B.: Emergence and Erosion: a Model for Rill Initiation and Development. Hydrological Processes 14(11-12), 2173–2205 (2000)CrossRefGoogle Scholar
  18. 18.
    D’Ambrosio, D., Gregorio, S.D., Gabriele, S., Gaudio, R.: A Cellular Automata Model for Soil Erosion by Water. Physics and Chemistry of the Earth, Part B 26(1), 33–40 (2001)CrossRefGoogle Scholar
  19. 19.
    D’Ambrosio, D., Gregorio, S.D., Iovine, G.: Simulating Debris Flows Through a Hexagonal Cellular Automata Model: Sciddica S3-hex. Natural Hazards and Earth System Sciences 3, 545–559 (2003)CrossRefGoogle Scholar
  20. 20.
    Avolio, M.V., Crisci, G.M., D’Ambrosio, D., Di Gregorio, S., Iovine, G., Rongo, R., Spataro, W.: An Extended Notion of Cellular Automata for Surface Flows Modelling. WSEAS Transactions on Computers 2, 1080–1085 (2003)Google Scholar
  21. 21.
    Chase, C.G.: Fluvial Landsculpting and the Fractal Dimension of Topography. Geomorphology 5, 39–57 (1992)CrossRefGoogle Scholar
  22. 22.
    Luo, W., Duffin, K.L., Peronja, E., Stravers, J.A., Henry, G.M.: A Web-Based Interactive Landform Simulation Model (WILSIM). Computers and Geosciences 30, 215–220 (2004)CrossRefGoogle Scholar
  23. 23.
    Haff, P.K.: Waterbots In: Landscape Erosion and Evolution Modeling. In: Harmon, R.S., Doe III, W.W. (eds.), Kluwer Academic/Plenum Publishers (2001)Google Scholar
  24. 24.
    Servat, D., Léonard, J., Perrier, E., Treuil, J.: The RIVAGE-Project: a New Approach for Simulating Runoff Dynamics. In: Feyen, J., Wiyo, K. (eds.) Modelling of Transport Processes in Soils at Various Scales in Time and Space, Wageningen Pers, Wageningen, The Netherlands, pp. 592–601 (1999)Google Scholar
  25. 25.
    Green, W.H., Ampt, G.A.: Studies on Soil Physics Part I: The Flow of Air and Water Soils. Journal of Agricultural Science 4(1), 1–24 (1911)CrossRefGoogle Scholar
  26. 26.
    Chow, V., Maidment, D., Mays, L.: Applied Hydrology. In: Water Resources and Environmental Engineering, McGraw-Hill, New-York (1988)Google Scholar
  27. 27.
    Govers, G.: Evaluation of transporting capacity formulae for overland flow. In: Parsons, A., Abrahams, A. (eds.) Overland flow. Hydraulics and erosion mechanics, pp. 243–273. UCL Press, London (1992)Google Scholar
  28. 28.
    Benassarou, A., Bittar, E., John, N., Lucas, L.: MC Slicing for Volume Rendering Applications. In: Sunderam, V.S., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2005. LNCS, vol. 3515, pp. 314–321. Springer, Heidelberg (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Gilles Valette
    • 1
    • 2
  • Stéphanie Prévost
    • 1
  • Laurent Lucas
    • 1
  • Joël Léonard
    • 2
  1. 1.CReSTIC/SIC/MADSEA3804 University of Reims Champagne-ArdenneReimsFrance
  2. 2.INRA UR1158 Agronomie Laon-Reims-MonsFrance

Personalised recommendations