Predicting Corresponding Region in a Third View Using Discrete Epipolar Lines

  • Hiroaki Natsumi
  • Akihiro Sugimoto
  • Yukiko Kenmochi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4992)


The discrete epipolar line, a discrete version of the epipolar line, is recently proposed to give geometric relationships between pixels in two different views so that we can directly deal with pixels in digital images. A method is then proposed to determine the discrete epipolar line providing that fully calibrated images are available. This paper deals with weakly calibrated digital images and proposes a method for determining the discrete epipolar line using only weakly calibrated images. This paper also deepens the work further, presenting a method for identifying the corresponding region in a third view from a given pair of corresponding pixels in two views.


Intersection Point Corner Point Fundamental Matrix Convex Polyhedron Perspective Projection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Andres, E.: Discrete Linear Objects in Dimension n:the Standard Model. Graphical Models 65, 92–111 (2003)zbMATHCrossRefGoogle Scholar
  2. 2.
    Blostein, S.D., Huang, T.S.: Error Analysis in Stereo Determination of 3-D Point Positions. IEEE Trans. on PAMI 9(6), 752–765 (1987)Google Scholar
  3. 3.
    Faugeras, O., Mourrain, B.B.: On the Geometry and Algebra of the Point and Line Correspondences between N images. In: Proc. of ICCV, pp. 951–956 (1995)Google Scholar
  4. 4.
    Faugeras, O., Robert, L.: What can Two Images Tell Us about a Third One? IJCV 18(1), 5–19 (1996)CrossRefGoogle Scholar
  5. 5.
    Hamanaka, M., Kenmochi, Y., Sugimoto, A.: Discrete Epipolar Geometry. In: Andrès, É., Damiand, G., Lienhardt, P. (eds.) DGCI 2005. LNCS, vol. 3429, pp. 323–334. Springer, Heidelberg (2005)Google Scholar
  6. 6.
    Hartley, R.: Lines and Points in Three Views and the Trifocal Tensor. IJCV 22(2), 125–140 (1997)CrossRefGoogle Scholar
  7. 7.
    Hartley, R., Sturm, P.: Triangulation. CVIU 68(2), 146–157 (1997)Google Scholar
  8. 8.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  9. 9.
    Heyden, A.: A Common Framework for Multiple View Tensors. In: Burkhardt, H., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1407, pp. 3–19. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  10. 10.
    Montanari, U.: On Limit Properties in Digitization Schemes. J. of ACM 17(2), 348–360 (1970)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Rodriguez, J.J., Aggarwal, J.K.: Stochastic Analysis of Stereo Quantization Error. IEEE Trans. on PAMI 12(5), 467–470 (1990)Google Scholar
  12. 12.
    Shashua, A., Werman, M.: Trilinearity of Three Perspective Views and its Associated Tensor. In: Proc. of ICCV, pp. 920–925 (1995)Google Scholar
  13. 13.
    Stewenius, H., Schaffalitzky, F., Nister, D.: How Hard is 3-View Triangulation Really? In: Proc. of ICCV, pp. 686–693 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Hiroaki Natsumi
    • 1
  • Akihiro Sugimoto
    • 2
    • 3
  • Yukiko Kenmochi
    • 3
  1. 1.Chiba UniversityJapan
  2. 2.National Institute of InformaticsJapan
  3. 3.Université Paris-Est, LABINFO-IGM, UMR CNRS 8049France

Personalised recommendations