A First Look into a Formal and Constructive Approach for Discrete Geometry Using Nonstandard Analysis

  • Laurent Fuchs
  • Gaëlle Largeteau-Skapin
  • Guy Wallet
  • Eric Andres
  • Agathe Chollet
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4992)

Abstract

In this paper, we recall the origins of discrete analytical geometry developed by J-P. Reveillès [1] in the nonstandard model of the continuum based on integers proposed by Harthong and Reeb [2,3]. We present some basis on constructive mathematics [4] and its link with programming [5,6]. We show that a suitable version of this new model of the continuum partly fits with the constructive axiomatic of ℝ proposed by Bridges [7]. The aim of this paper is to take a first look at a possible formal and constructive approach to discrete geometry. This would open the way to better algorithmic definition of discrete differential concepts.

Keywords

discrete geometry nonstandard analysis constructive mathematics 

References

  1. 1.
    Reveillès, J.P., Richard, D.: Back and forth between continuous and discrete for the working computer scientist. Annals of Mathematics and Artificial Intelligence, Mathematics and Informatic 16, 89–152 (1996)CrossRefMATHGoogle Scholar
  2. 2.
    Harthong, J.: Éléments pour une théorie du continu. Astérisque 109/110, 235–244 (1983)MathSciNetGoogle Scholar
  3. 3.
    Harthong, J.: Une théorie du continu. In: Barreau, H., Harthong, J. (eds.) La mathématiques non standard, Paris, Editions du CNRS, pp. 307–329 (1989)Google Scholar
  4. 4.
    Bishop, E., Bridges, D.: Constructive Analysis. Springer, Heidelberg (1985)MATHGoogle Scholar
  5. 5.
    Martin-Lof, P.: Constructive mathematics and computer programming. Logic, Methodology and Philosophy of Science VI, 153–175 (1980)Google Scholar
  6. 6.
    Howard, W.A.: The formulae-as-types notion of construction. H.B. Curry: Essays on Combinatory Logic, Lambda-calculus and Formalism, 479–490 (1980)Google Scholar
  7. 7.
    Bridges, D.S.: Constructive mathematics: A foundation for computable analysis. Theor. Comput. Sci. 219, 95–109 (1999)CrossRefMathSciNetMATHGoogle Scholar
  8. 8.
    Mc Laughlin, W.I.: Resolving Zeno’s paradoxes. Scientific American, 84–89 (1994)Google Scholar
  9. 9.
    Diener, F., Reeb, G.: Analyse Non Standard. Hermann, Paris (1989)Google Scholar
  10. 10.
    Diener, M.: Application du calcul de Harthong-Reeb aux routines graphiques. In: [11], pp. 424–435Google Scholar
  11. 11.
    Salanski, J.M., Sinaceurs, H. (eds.): Le Labyrinthe du Continu. Springer, Heidelberg (1992)Google Scholar
  12. 12.
    Bishop, E.: Foundations of Constructive Analysis. McGraw-Hill, New York (1967)MATHGoogle Scholar
  13. 13.
    Nelson, E.: Internal set theory: A new approach to nonstandard analysis. Bulletin of the American Mathematical Society 83, 1165–1198 (1977)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Robinson, A.: Non-standard analysis, 2nd edn. American Elsevier, New York (1974)Google Scholar
  15. 15.
    Coquand, T., Huet, G.P.: A selected bibliography on constructive mathematics, intuitionistic type theory and higher order deduction. j-J-SYMBOLIC-COMP 3, 323–328 (1986)MathSciNetGoogle Scholar
  16. 16.
    Coquand, T., Huet, G.P.: The calculus of constructions. Inf. Comput. 76, 95–120 (1988)CrossRefMathSciNetMATHGoogle Scholar
  17. 17.
    Beeson, M.J.: Foundations of constructive Mathematics. A Series of Modern Surveys in Mathematics. Springer, Heidelberg (1985)MATHGoogle Scholar
  18. 18.
    Troelstra, A.S., van Dalen, D.: Constructivism in Mathematics: An Introduction, vol. I. North-Holland, Amsterdam (1988)Google Scholar
  19. 19.
    Heyting, A.: Intuitionism an introduction. Studies in Logic and Foundations of Mathematics (1956)Google Scholar
  20. 20.
    Constable, R.L., Allen, S.F., Bromley, H.M., Cleaveland, W.R., Cremer, J.F., Harper, R.W., Howe, D.J., Knoblock, T.B., Mendler, N.P., Panangaden, P., Sasaki, J.T., Smith, S.F.: Implementing Mathematics with the Nuprl Development System. Prentice-Hall, Englewood Cliffs (1986)Google Scholar
  21. 21.
    Bridges, D., Reeves, S.: Constructive mathematics, in theory and programming practice. Technical Report CDMTCS-068, Centre for Discrete Mathematics and Theorical Computer Science (1997)Google Scholar
  22. 22.
    Palmgren, E.: A constructive approach to nonstandard analysis. Annals of Pure and Applied Logic 73, 297–325 (1995)CrossRefMathSciNetMATHGoogle Scholar
  23. 23.
    Palmgren, E.: Developments in constructive nonstandard analysis. The Bulletin of Symbolic Logic 4, 233–272 (1998)CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Laurent Fuchs
    • 1
  • Gaëlle Largeteau-Skapin
    • 1
  • Guy Wallet
    • 2
  • Eric Andres
    • 1
  • Agathe Chollet
    • 2
  1. 1.Laboratoire SICUniversité de PoitiersFuturoscope Chasseneuil cédexFrance
  2. 2.Laboratoire LMAUniversité de La RochelleLa Rochelle cedexFrance

Personalised recommendations