Advertisement

On Watershed Cuts and Thinnings

  • Jean Cousty
  • Gilles Bertrand
  • Laurent Najman
  • Michel Couprie
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4992)

Abstract

We recently introduced the watershed cuts, a notion of watershed in edge-weighted graphs. In this paper, we propose a new thinning paradigm to compute them. More precisely, we introduce a new transformation, called border thinning, that lowers the values of edges that match a simple local configuration until idempotence and prove the equivalence between the cuts obtained by this transformation and the watershed cuts of a map. We discuss the possibility of parallel algorithms based on this transformation and give a sequential implementation that runs in linear time whatever the range of the input map.

Keywords

Linear Time Minimum Span Tree Catchment Basin Span Forest Minimum Span Tree Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Beucher, S., Lantuéjoul, C.: Use of watersheds in contour detection. In: Procs. of the International Workshop on Image Processing Real-Time Edge and Motion Detection/Estimation (1979)Google Scholar
  2. 2.
    Vincent, L., Soille, P.: Watersheds in digital spaces: An efficient algorithm based on immersion simulations. IEEE Trans. PAMI 13(6), 583–598 (1991)Google Scholar
  3. 3.
    Meyer, F.: Un algorithme optimal de ligne de partage des eaux. In: Procs. of 8ème Congrès AFCET, Lyon-Villeurbanne, France, pp. 847–859 (1991)Google Scholar
  4. 4.
    Couprie, M., Bertrand, G.: Topological grayscale watershed transform. Procs. of SPIE Vision Geometry V 3168, 136–146 (1997)Google Scholar
  5. 5.
    Bertrand, G.: On topological watersheds. JMIV 22(2-3), 217–230 (2005)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Cousty, J., Bertrand, G., Najman, L., Couprie, M.: Watershed cuts. In: Procs. ISMM., pp. 301–312 (2007)Google Scholar
  7. 7.
    Meyer, F.: Minimum spanning forests for morphological segmentation. In: Procs. ISMM., pp. 77–84 (1994)Google Scholar
  8. 8.
    Falcão, A.X., Stolfi, J., de Alencar Lotufo, R.: The image foresting transform: theory, algorithm and applications. IEEE Trans. PAMI 26, 19–29 (2004)Google Scholar
  9. 9.
    Cousty, J., Bertrand, G., Najman, L., Couprie, M.: Watersheds, minimum spanning forest and the drop of water principle, Technical report IGM-2007-01 (Submitted, 2007), http://igm.univ-mlv.fr/LabInfo/rapportsInternes/2007/01.pdf
  10. 10.
    Alléne, C., Audibert, J.Y., Couprie, M., Cousty, J., Keriven, R.: Some links between min-cuts, optimal spanning forests and watersheds. In: Procs. ISMM., pp. 253–264 (2007)Google Scholar
  11. 11.
    Cormen, T.H., Leiserson, C., Rivest, R.: Introduction to algorithms, 2nd edn. MIT Press, Cambridge (2001)zbMATHGoogle Scholar
  12. 12.
    Chazelle, B.: A minimum spanning tree algorithm with inverse-Ackermann type complexity. Journal of the ACM 47, 1028–1047 (2000)CrossRefMathSciNetzbMATHGoogle Scholar
  13. 13.
    Englert, R., Kropatsch, W.: Image structure from monotonic dual graph. In: Münch, M., Nagl, M. (eds.) AGTIVE 1999. LNCS, vol. 1779, pp. 297–308. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  14. 14.
    Serra, J., Vincent, L.: An overview of morphological filtering. Circuits Systems Signal Process 11(1), 48–107 (1992)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Najman, L., Couprie, M.: Building the component tree in quasi-linear time. IEEE Trans. Image Processing 15(11), 3531–3539 (2006)CrossRefGoogle Scholar
  16. 16.
    Najman, L., Schmitt, M.: Geodesic saliency of watershed contours and hierarchical segmentation. IEEE Trans. PAMI 18(12), 1163–1173 (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Jean Cousty
    • 1
  • Gilles Bertrand
    • 1
  • Laurent Najman
    • 1
  • Michel Couprie
    • 1
  1. 1.LABINFO-IGM, UMR CNRS 8049Université Paris-EstFrance

Personalised recommendations