Advances in Constrained Connectivity

  • Pierre Soille
  • Jacopo Grazzini
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4992)


The concept of constrained connectivity [Soille 2008, PAMI] is summarised. We then introduce a variety of measurements for characterising connected components generated by constrained connectivity relations. We also propose a weighted mean for estimating a representative value of each connected component. Finally, we define the notion of spurious connected components and investigate a variety of methods for suppressing them.


Logical Predicate Adjacent Pixel Connectivity Index Spatial Data Infrastructure Minimum Span Tree Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Zucker, S.: Region growing: childhood and adolescence. Computer Graphics and Image Processing 5, 382–399 (1976)CrossRefGoogle Scholar
  2. 2.
    Jardine, N., Sibson, R.: Mathematical Taxonomy. Wiley, London (1971)zbMATHGoogle Scholar
  3. 3.
    Brice, C., Fennema, C.: Scene analysis using regions. Artificial Intelligence 1, 205–226 (1970)CrossRefGoogle Scholar
  4. 4.
    Rosenfeld, A.: Fuzzy digital topology. Information and Control 40, 76–87 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Serra, J., Salembier, P.: Connected operators and pyramids. In: Dougherty, E., Gader, P., Serra, J. (eds.) Image Algebra and Morphological Image Processing IV, vol. SPIE-2030, pp. 65–76 (1993)Google Scholar
  6. 6.
    Nagao, M., Matsuyama, T., Ikeda, Y.: Region extraction and shape analysis in aerial photographs. Computer Graphics and Image Processing 10, 195–223 (1979)CrossRefGoogle Scholar
  7. 7.
    Meyer, F., Maragos, P.: Morphological scale-space representation with levelings. In: Nielsen, M., Johansen, P., Fogh Olsen, O., Weickert, J. (eds.) Scale-Space 1999. LNCS, vol. 1682, pp. 187–198. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  8. 8.
    Gower, J., Ross, G.: Minimum spanning trees and single linkage cluster analysis. Applied Statistics 18, 54–64 (1969)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Hambrusch, S., He, X., Miller, R.: Parallel algorithms for gray-scale image component labeling on a mesh-connected computer. In: Proc. of the 4th ACM Symposium on Parallel Algorithms and Architectures, pp. 100–108 (1992)Google Scholar
  10. 10.
    Soille, P.: Constrained connectivity for hierarchical image partitioning and simplification. IEEE Transactions on Pattern Analysis and Machine Intelligence (2008), [Available as online preprint since 18 October 2007]Google Scholar
  11. 11.
    Schrijver, A.: On the history of combinatorial optimization (till 1960). In: Aardal, K., Nemhauser, G., Weismantel, R. (eds.) Handbook of Discrete Optimization, pp. 1–68. Elsevier, Amsterdam (2005)Google Scholar
  12. 12.
    Kruskal, J.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical Society 7, 48–50 (1956)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Sneath, P.: Computers in taxonomy. Journal of General Microbiology 17, 201–226 (1957)Google Scholar
  14. 14.
    Soille, P.: On genuine connectivity relations based on logical predicates. In: Proc. of 14th Int. Conf. on Image Analysis and Processing, Modena, Italy, pp. 487–492. IEEE Computer Society Press, Los Alamitos (2007)CrossRefGoogle Scholar
  15. 15.
    Grazzini, J., Soille, P.: Adaptive morphological filtering using similarities based on geodesic time. In: Coeurjolly, D., et al. (eds.) DGCI 2008. LNCS, vol. 4992, pp. 519–528. Springer, Heidelberg (2008)Google Scholar
  16. 16.
    Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 603–619 (2002)CrossRefGoogle Scholar
  17. 17.
    Kropatsch, W., Haxhimusa, Y.: Grouping and segmentation in a hierarchy of graphs. In: Bouman, C., Miller, E. (eds.) Proc. of the 16th IS&T SPIE Annual Symposium, Computational Imaging II, vol. SPIE-5299, pp. 193–204 (2004)Google Scholar
  18. 18.
    Tanimoto, S., Pavlidis, T.: The editing of picture segmentations using local analysis of graphs. Communications of the ACM 20, 223–229 (1977)CrossRefGoogle Scholar
  19. 19.
    Crespo, J., Schafer, R., Serra, J., Gratin, C., Meyer, F.: The flat zone approach: a general low-level region merging segmentation method. Signal Processing 62, 37–60 (1997)zbMATHCrossRefGoogle Scholar
  20. 20.
    Soille, P.: Beyond self-duality in morphological image analysis. Image and Vision Computing 23, 249–257 (2005)CrossRefGoogle Scholar
  21. 21.
    Adams, R., Bischof, L.: Seeded region growing. IEEE Transactions on Pattern Analysis and Machine Intelligence 16, 641–647 (1994)CrossRefGoogle Scholar
  22. 22.
    Brunner, D., Soille, P.: Iterative area filtering of multichannel images. Image and Vision Computing 25, 1352–1364 (2007)CrossRefGoogle Scholar
  23. 23.
    Mehnert, A., Jackway, P.: An improved seeded region growing. Pattern Recognition Letters 18, 1065–1071 (1997)CrossRefGoogle Scholar
  24. 24.
    Guigues, L., Le Men, H., Cocquerez, J.P.: The hierarchy of the cocoons of a graph and its application to image segmentation. Pattern Recognition Letters 24, 1059–1066 (2003)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Pierre Soille
    • 1
  • Jacopo Grazzini
    • 1
  1. 1.Spatial Data Infrastructures Unit Institute for Environment and SustainabilityJoint Research Centre of the European CommissionIspraItaly

Personalised recommendations