Advances in Constrained Connectivity

  • Pierre Soille
  • Jacopo Grazzini
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4992)

Abstract

The concept of constrained connectivity [Soille 2008, PAMI] is summarised. We then introduce a variety of measurements for characterising connected components generated by constrained connectivity relations. We also propose a weighted mean for estimating a representative value of each connected component. Finally, we define the notion of spurious connected components and investigate a variety of methods for suppressing them.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zucker, S.: Region growing: childhood and adolescence. Computer Graphics and Image Processing 5, 382–399 (1976)CrossRefGoogle Scholar
  2. 2.
    Jardine, N., Sibson, R.: Mathematical Taxonomy. Wiley, London (1971)MATHGoogle Scholar
  3. 3.
    Brice, C., Fennema, C.: Scene analysis using regions. Artificial Intelligence 1, 205–226 (1970)CrossRefGoogle Scholar
  4. 4.
    Rosenfeld, A.: Fuzzy digital topology. Information and Control 40, 76–87 (1979)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Serra, J., Salembier, P.: Connected operators and pyramids. In: Dougherty, E., Gader, P., Serra, J. (eds.) Image Algebra and Morphological Image Processing IV, vol. SPIE-2030, pp. 65–76 (1993)Google Scholar
  6. 6.
    Nagao, M., Matsuyama, T., Ikeda, Y.: Region extraction and shape analysis in aerial photographs. Computer Graphics and Image Processing 10, 195–223 (1979)CrossRefGoogle Scholar
  7. 7.
    Meyer, F., Maragos, P.: Morphological scale-space representation with levelings. In: Nielsen, M., Johansen, P., Fogh Olsen, O., Weickert, J. (eds.) Scale-Space 1999. LNCS, vol. 1682, pp. 187–198. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  8. 8.
    Gower, J., Ross, G.: Minimum spanning trees and single linkage cluster analysis. Applied Statistics 18, 54–64 (1969)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Hambrusch, S., He, X., Miller, R.: Parallel algorithms for gray-scale image component labeling on a mesh-connected computer. In: Proc. of the 4th ACM Symposium on Parallel Algorithms and Architectures, pp. 100–108 (1992)Google Scholar
  10. 10.
    Soille, P.: Constrained connectivity for hierarchical image partitioning and simplification. IEEE Transactions on Pattern Analysis and Machine Intelligence (2008), [Available as online preprint since 18 October 2007]Google Scholar
  11. 11.
    Schrijver, A.: On the history of combinatorial optimization (till 1960). In: Aardal, K., Nemhauser, G., Weismantel, R. (eds.) Handbook of Discrete Optimization, pp. 1–68. Elsevier, Amsterdam (2005)Google Scholar
  12. 12.
    Kruskal, J.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical Society 7, 48–50 (1956)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Sneath, P.: Computers in taxonomy. Journal of General Microbiology 17, 201–226 (1957)Google Scholar
  14. 14.
    Soille, P.: On genuine connectivity relations based on logical predicates. In: Proc. of 14th Int. Conf. on Image Analysis and Processing, Modena, Italy, pp. 487–492. IEEE Computer Society Press, Los Alamitos (2007)CrossRefGoogle Scholar
  15. 15.
    Grazzini, J., Soille, P.: Adaptive morphological filtering using similarities based on geodesic time. In: Coeurjolly, D., et al. (eds.) DGCI 2008. LNCS, vol. 4992, pp. 519–528. Springer, Heidelberg (2008)Google Scholar
  16. 16.
    Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 603–619 (2002)CrossRefGoogle Scholar
  17. 17.
    Kropatsch, W., Haxhimusa, Y.: Grouping and segmentation in a hierarchy of graphs. In: Bouman, C., Miller, E. (eds.) Proc. of the 16th IS&T SPIE Annual Symposium, Computational Imaging II, vol. SPIE-5299, pp. 193–204 (2004)Google Scholar
  18. 18.
    Tanimoto, S., Pavlidis, T.: The editing of picture segmentations using local analysis of graphs. Communications of the ACM 20, 223–229 (1977)CrossRefGoogle Scholar
  19. 19.
    Crespo, J., Schafer, R., Serra, J., Gratin, C., Meyer, F.: The flat zone approach: a general low-level region merging segmentation method. Signal Processing 62, 37–60 (1997)MATHCrossRefGoogle Scholar
  20. 20.
    Soille, P.: Beyond self-duality in morphological image analysis. Image and Vision Computing 23, 249–257 (2005)CrossRefGoogle Scholar
  21. 21.
    Adams, R., Bischof, L.: Seeded region growing. IEEE Transactions on Pattern Analysis and Machine Intelligence 16, 641–647 (1994)CrossRefGoogle Scholar
  22. 22.
    Brunner, D., Soille, P.: Iterative area filtering of multichannel images. Image and Vision Computing 25, 1352–1364 (2007)CrossRefGoogle Scholar
  23. 23.
    Mehnert, A., Jackway, P.: An improved seeded region growing. Pattern Recognition Letters 18, 1065–1071 (1997)CrossRefGoogle Scholar
  24. 24.
    Guigues, L., Le Men, H., Cocquerez, J.P.: The hierarchy of the cocoons of a graph and its application to image segmentation. Pattern Recognition Letters 24, 1059–1066 (2003)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Pierre Soille
    • 1
  • Jacopo Grazzini
    • 1
  1. 1.Spatial Data Infrastructures Unit Institute for Environment and SustainabilityJoint Research Centre of the European CommissionIspraItaly

Personalised recommendations