Approximating hv-Convex Binary Matrices and Images from Discrete Projections

  • Fethi Jarray
  • Marie-Christine Costa
  • Christophe Picouleau
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4992)


We study the problem of reconstructing hv-convex binary matrices from few projections. We solve a polynomial time case and we determine some properties of the hv-convex matrices. Since the problem is NP-complete, we provide an iterative approximation based on a longest path and a min-cost/max-flow model. The experimental results show that the reconstruction algorithm performs quite well.


Discrete Tomography hv-convex Image Reconstruction 


  1. 1.
    Barcucci, E., Del Lungo, A., Nivat, M., Pinzani, R.: Reconstructing convex polyominoes from their horizontal and vertical projections. Theoretical computer science 155(1), 321–347 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Batenburg, K.J.: An evolutionary algorithm for discrete tomography. Discrete applied mathematics 155(1), 36–54 (2005)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Boufkhad, Dubois, Nivat, M.: Reconstructing (h,v)-convex 2-dimensional patterns of objects from approximate horizontal and vertical projections. Theoretical Computer Science 290(3), 1647–1664 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Brualdi, R.A.: Matrices of zeros and ones with fixed row and column sum. Linear algebra and its applications 3, 159–231 (1980)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Chrobak, M., Dürr, C.: Reconstructing hv-convex polyominoes from orthogonal projection. Inform. Process. Lett. 69, 283–289 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Dahl, G., Fatberg, T.: Optimization and reconstruction of hv-convex (0,1)-matrices. Discrete applied mathematics 155(1), 93–105 (2005)CrossRefGoogle Scholar
  7. 7.
    Gardner, R.J., Gritzmann, P., Prangenberg, D.: On the computational complexity of determining polyatomic structures by X-rays. Theoretical computer science 233, 91–106 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Goldberg, A.V.: An efficient implementation of a scaling minimum-cost flow algorithm. Journal of algorithms 22, 1–29 (1997)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Herman, G.T., Kuba, A.: Discrete Tomography: Foundations, Algorithms and Applications. Birkhäuser, Basel (1999)zbMATHGoogle Scholar
  10. 10.
    Jarray, F.: Solving problems of discrete tomography. Applications in workforce scheduling, Ph.D. Thesis, University of CNAM, Paris (2004)Google Scholar
  11. 11.
    Picouleau, C.: Reconstruction of domino tiling from its two orthogonal projections. Theoretical computer science 255(1), 437–447 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Ryser, H.J.: Combinatorial Properties of Matrices of Zeros and Ones. Canad. J. Math 9, 371–377 (1957)zbMATHMathSciNetGoogle Scholar
  13. 13.
    Wang, B., Zhang, F.: On the precise Number of (0,1)-Matrices in u(R,S). Discrete mathematics 187, 211–220 (1998) zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Woeginger, G.J.: The reconstruction of polyominoes from their orthogonal projections. Information Processing Letters 77(5-6), 225–229 (2001)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Fethi Jarray
    • 1
    • 2
  • Marie-Christine Costa
    • 2
  • Christophe Picouleau
    • 2
  1. 1.Gabes University of Sciences 6072 GabesTunisia
  2. 2.Laboratoire CEDRIC ParisFrance

Personalised recommendations