An Exact, Non-iterative Mojette Inversion Technique Utilising Ghosts

  • Shekhar Chandra
  • Imants Svalbe
  • Jean-Pierre Guédon
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4992)


Mojette projections of discrete pixel arrays form good approximations to experimental parallel-beam x-ray intensity absorption profiles. They are discrete sums taken at angles defined by rational fractions. Mojette-like projections form a “half-way house” between a conventional sinogram and fully digital projection data. A new direct and exact image reconstruction technique is proposed here to invert arbitrary but sufficient sets of Mojette data. This new method does not require iterative, statistical solution methods, nor does it use the efficient but noise-sensitive “corner-based” inversion method. It instead exploits the exact invertibility of the prime-sized array Finite Radon Transform (FRT), and the fact that all Mojette projections can be mapped directly into FRT projections. The algorithm uses redundant or “calibrated” areas of an image to expand any asymmetric Mojette set into the smallest symmetric FRT set that contains all of the Mojette data without any re-binning. FRT data will be missing at all angles where Mojette data is not provided, but can be recovered exactly from the “ghost projections” that are generated by back-projecting all the known data across the calibrated regions of the reconstructed image space. Algorithms are presented to enable efficient image reconstruction from any exact Mojette projection set, with a view to extending this approach to invert real x-ray data.


Image Space Inversion Method Projection Angle Inversion Scheme Embed Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Kak, A.C., Slaney, M.: Principles of Computerized Tomographic Imaging. Society of Industrial and Applied Mathematics (2001)Google Scholar
  2. 2.
    Beylkin, G.: Discrete Radon transform. IEEE Trans. Acoust., Speech, Signal Processing 35(2), 162–172 (1987)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Averbuch, A., Donoho, D., Coifman, R., Israeli, M., Walden, J.: Fast slant stack: A notion of Radon transform for data on a cartesian grid which is rapidly computable, algebraically exact, geometrically faithful and invertible. Tech. Report, Stanford University 11 (2001)Google Scholar
  4. 4.
    Kingston, A., Svalbe, I.: Projective transforms on periodic discrete image arrays. Advances in Imaging and Electron Physics 139, 75–177 (2006)CrossRefGoogle Scholar
  5. 5.
    Guédon, J.P., Normand, N.: The Mojette transform: the first ten years. In: Andrès, É., Damiand, G., Lienhardt, P. (eds.) DGCI 2005. LNCS, vol. 3429, pp. 79–91. Springer, Heidelberg (2005)Google Scholar
  6. 6.
    Servières, M., Idier, J., Normand, N., Guédon, J.P.: Conjugate gradient Mojette reconstruction. Proceedings of the SPIE - The International Society for Optical Engineering 5747(1), 2067–2074 (2005)Google Scholar
  7. 7.
    Matúš, F., Flusser, J.: Image representation via a finite Radon transform. IEEE Transactions on Pattern Analysis and Machine Intelligence 15(10), 996–1006 (1993)CrossRefGoogle Scholar
  8. 8.
    Edholm, P., Herman, G.: Linograms in image reconstruction from projections: Part 1. back projecting using the Radon transform. In: Proc. Twenty-First Annual Hawaii International Conference on System Sciences, vol. 4, pp. 48–50 (1988)Google Scholar
  9. 9.
    Hardy, G., Wright, E.: An Introduction to the Theory of Numbers, 5th edn. Clarendon Press, Oxford (1979)zbMATHGoogle Scholar
  10. 10.
    Normand, N., Guédon, J.P., Philippe, O., Barba, D.: Controlled redundancy for image coding and high-speed transmission. In: Proceedings of the SPIE - The International Society for Optical Engineering, vol. 2727, pp. 1070–1081 (1996)Google Scholar
  11. 11.
    Philippe, O., Guédon, J.P.: Correlation properties of the Mojette representation for non-exact image reconstruction. In: ITG-Fachbericht Verlag, Proc. Picture Coding Symposium, vol. 143, pp. 237–242 (1997)Google Scholar
  12. 12.
    Katz, M.: Questions of Uniqueness and Resolution in Reconstruction from Projections. Springer, Heidelberg (1977)Google Scholar
  13. 13.
    Svalbe, I., van der Spek, D.: Reconstruction of tomographic images using analog projections and the digital Radon transform. Linear Algebra and Its Applications 339, 125–145 (2001)CrossRefMathSciNetzbMATHGoogle Scholar
  14. 14.
    Servières, M., Guédon, J.P., Normand, N.: A discrete tomography approach to PET reconstruction. In: Proc. 7th International Conf. on Fully 3D Reconstruction in Radiology and Nuclear Medicine (2003)Google Scholar
  15. 15.
    Kingston, A., Svalbe, I.: Geometric effects in redundant keys used to encrypt data transformed by finite discrete Radon projections. In: Proc. IEEE Digital Imaging Computing: techniques and applications, Cairns, Australia (2005)Google Scholar
  16. 16.
    Boyd, J., Little, J.: Complementary data fusion for limited-angle tomography. In: Proceedings 1994 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 288–294 (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Shekhar Chandra
    • 1
  • Imants Svalbe
    • 1
  • Jean-Pierre Guédon
    • 2
  1. 1.School of PhysicsMonash UniversityAustralia
  2. 2.IRCCyN-IVCÉcole polytechnique de l’Université de NantesFrance

Personalised recommendations