An Efficient and Quasi Linear Worst-Case Time Algorithm for Digital Plane Recognition

  • Emilie Charrier
  • Lilian Buzer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4992)

Abstract

This paper introduces a method for the digital naive plane recognition problem. This method is a revision of a previous one. It is the only method which guarantees an O(nlogD) time complexity in the worst-case, where (D − 1) represents the size of a bounding box that encloses the points, and which is very efficient in practice. The presented approach consists in determining if a set of n points in ℤ3 corresponds to a piece of digital naive hyperplane in \(\lfloor 4\log_{9/5}D \rfloor + 10\) iterations in the worst case. Each iteration performs n dot products. The method determines whether a set of 106 voxels corresponds to a piece of a digital plane in ten iterations in the average which is five times less than the upper bound. In addition, the approach succeeds in reducing the digital naive plane recognition problem in ℤ3 to a feasibility problem on a two-dimensional convex function. This method is especially fitted when the set of points is dense in the bounding box, i.e. when \(D=O(\sqrt{n})\).

Keywords

Digital naive plane recognition convex optimization feasibility problem quasi linear time complexity chord’s algorithm 

References

  1. 1.
    Brimkov, V., Coeurjolly, D., Klette, R.: Digital Planarity - A review. Discrete Applied Mathematics 15(4), 468–495 (2007)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Buzer, L.: A linear incremental algorithm for naive and standard digital lines and planes recognition. Graphical Models 65(1-3), 61–76 (2003)MATHCrossRefGoogle Scholar
  3. 3.
    Buzer, L.: A composite and quasi linear time method for the digital plane recognition. In: Kuba, A., Nyúl, L.G., Palágyi, K. (eds.) DGCI 2006. LNCS, vol. 4245, pp. 331–342. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Debled-Rennesson, I.: Etude et reconnaissance des droites et plans discrets. PhD Thesis, Université Louis Pasteur, Strasbourg (1995)Google Scholar
  5. 5.
    Debled-Rennesson, I., Reveillès, J.-P.: A new approach to digital planes. In: Proc. Vision Geometry III, SPIE, vol. 2356, pp. 12–21 (1994)Google Scholar
  6. 6.
    Françon, J., Schramm, J.M., Tajine, M.: Recognizing arithmetic straight lines and planes. In: Miguet, S., Ubéda, S., Montanvert, A. (eds.) DGCI 1996. LNCS, vol. 1176, pp. 141–150. Springer, Heidelberg (1996)Google Scholar
  7. 7.
    Gerard, Y., Debled-Rennesson, I., Zimmermann, P.: An elementary digital plane recognition algorithm, 151(1-3), pp. 169–183 (2005)Google Scholar
  8. 8.
    Harvey, W.: Computing two-dimensional integer hulls. SIAM J. Compute. 28(6), 2285–2299 (1999)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Megiddo, N.: Linear programming in linear time when the dimension is fixed. J. ACM 31, 114–127 (1984)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Neumann, B.H.: On an invariant of plane regions and mass distributions. Journ. London Math. Soc. 20, 226–237 (1945)MATHCrossRefGoogle Scholar
  11. 11.
    Pick, G.: Geometrisches zur Zahlentheorie. Sitzenber. Lotos 19, 311–319 (1899)Google Scholar
  12. 12.
    Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introduction. Springer, New York (1985)Google Scholar
  13. 13.
    Reveillès, J.-P.: Combinatorial pieces in digital lines and planes. In: Proc. Vision Geometry IV, SPIE, vol. 2573, pp. 23–34 (1995)Google Scholar
  14. 14.
    Stojmenovic, I., Tosic, R.: Digitization schemes and the recognition of digital straight lines, hyperplanes and flats in arbitrary dimensions. Vision Geometry, Contemporary Mathematics Series 119, 197–212 (1991)MathSciNetGoogle Scholar
  15. 15.
    Veelaert, P.: Digital planarity of rectangular surface segments. IEEE Trans. Pattern Analysis Machine Intelligence 16, 647–652 (1994)CrossRefGoogle Scholar
  16. 16.
    Vittone, J., Chassery, J.-M.: Recognition of digital naive planes and polyhedrization. In: Nyström, I., Sanniti di Baja, G., Borgefors, G. (eds.) DGCI 2000. LNCS, vol. 1953, pp. 296–307. Springer, Heidelberg (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Emilie Charrier
    • 1
    • 2
    • 3
  • Lilian Buzer
    • 1
    • 2
  1. 1.LABINFO-IGM, CNRS, UMR 8049Université Paris-Est 
  2. 2.ESIEE2, boulevard Blaise Pascal, Cité DESCARTESNoisy le Grand CEDEXFrance
  3. 3.DGA/D4S/MRIS 

Personalised recommendations