Robust Estimation of Curvature along Digital Contours with Global Optimization

  • Bertrand Kerautret
  • Jacques-Olivier Lachaud
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4992)

Abstract

In this paper we introduce a new curvature estimator based on global optimisation. This method called Global Min-Curvature exploits the geometric properties of digital contours by using local bounds on tangent directions defined by the maximal digital straight segments. The estimator is adapted to noisy contours by replacing maximal segments with maximal blurred digital straight segments. Experimentations on perfect and damaged digital contours are performed and in both cases, comparisons with other existing methods are presented.

Keywords

Tangent Direction Active Contour Curvature Estimation Merging Process Curvature Estimator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Marji, M.: On the detection of dominant points on digital planar curves. PhD thesis, Wayne State University, Detroit, Michigan (2003)Google Scholar
  2. 2.
    Klette, R., Rosenfeld, A.: Digital Geometry - Geometric Methods for Digital Picture Analysis. Morgan Kaufmann, San Francisco (2004)MATHGoogle Scholar
  3. 3.
    de Vieilleville, F., Lachaud, J.O.: Convex shapes and convergence speed of discrete tangent estimators. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Remagnino, P., Nefian, A., Meenakshisundaram, G., Pascucci, V., Zara, J., Molineros, J., Theisel, H., Malzbender, T. (eds.) ISVC 2006. LNCS, vol. 4292, Springer, Heidelberg (2006)Google Scholar
  4. 4.
    Lachaud, J.O.: Espaces non-euclidiens et analyse d’image : modèles déformables riemanniens et discrets, topologie et géométrie discrète. Habilitation diriger des recherches, Université Bordeaux 1, Talence, France (2006)Google Scholar
  5. 5.
    Huxley, M.N.: Exponential sums and lattice points. Proc. London Math. Soc. 60, 471–502 (1990)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Klette, R., Žunić, J.: Multigrid convergence of calculated features in image analysis. Journal of Mathematical Imaging and Vision 13, 173–191 (2000)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Kovalevsky, V., Fuchs, S.: Theoretical and experimental analysis of the accuracy of perimeter estimates. In: Förster, Ruwiedel (eds.) Proc. Robust Computer Vision, pp. 218–242 (1992)Google Scholar
  8. 8.
    Sloboda, F., Zat̆ko, B., Stoer, J.: On approximation of planar one-dimensional continua. In: Klette, R., Rosenfeld, A., Sloboda, F. (eds.) Advances in Digital and Computational Geometry, pp. 113–160 (1998)Google Scholar
  9. 9.
    Asano, T., Kawamura, Y., Klette, R., Obokata, K.: Minimum-length polygons in approximation sausages. In: Arcelli, C., Cordella, L.P., Sanniti di Baja, G. (eds.) IWVF 2001. LNCS, vol. 2059, pp. 103–112. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Coeurjolly, D.: Algorithmique et géométrie pour la caractérisation des courbes et des surfaces. PhD thesis, Université Lyon 2 (2002)Google Scholar
  11. 11.
    Lachaud, J.O., Vialard, A., de Vieilleville, F.: Analysis and comparative evaluation of discrete tangent estimators. In: Andrès, É., Damiand, G., Lienhardt, P. (eds.) DGCI 2005. LNCS, vol. 3429, pp. 140–251. Springer, Heidelberg (2005)Google Scholar
  12. 12.
    Lachaud, J.O., Vialard, A., de Vieilleville, F.: Fast, accurate and convergent tangent estimation on digital contours. IVC 25(10), 1572–1587 (2007)CrossRefGoogle Scholar
  13. 13.
    Hermann, S., Klette, R.: A comparative study on 2d curvature estimators. Research report CITR-TR-183, CITR, The University of Auckland, New Zealand (2006)Google Scholar
  14. 14.
    de Vieilleville, F., Lachaud, J.O., Feschet, F.: Maximal digital straight segments and convergence of discrete geometric estimators. JMIV 27(2), 471–502 (2007)Google Scholar
  15. 15.
    Brunet, F.: Convolutions binomiales et dérivation de fonctions discrètes bruitées. Master’s thesis, LAIC. University of Clermont-Ferrand. France (2007)Google Scholar
  16. 16.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. International Journal of Computer Vision 1(4), 321–331 (1988)CrossRefGoogle Scholar
  17. 17.
    Caselles, V., Catte, F., Coll, T., Dibos, F.: A geometric model for active contours. Numerische Mathematik 66, 1–31 (1993)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Feschet, F., Tougne, L.: Optimal time computation of the tangent of a discrete curve: Application to the curvature. In: Bertrand, G., Couprie, M., Perroton, L. (eds.) DGCI 1999. LNCS, vol. 1568, pp. 31–40. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  19. 19.
    Debled-Rennesson, I., Feschet, F., Rouyer-Degli, J.: Optimal blurred segments decomposition of noisy shapes in linear times. Computers and Graphics (2006)Google Scholar
  20. 20.
    Buzer, L.: An elementary algorithm for digital line recognition in the general case. In: Andrès, É., Damiand, G., Lienhardt, P. (eds.) DGCI 2005. LNCS, vol. 3429, pp. 299–310. Springer, Heidelberg (2005)Google Scholar
  21. 21.
    Roussillon, T., Tougne, L., Sivignon, I.: Computation of binary objects sides number using discrete geometry application to automatic pebbles shape analysis. In: Proc. 14th International Conference on Image Analysis and Processing (2007)Google Scholar
  22. 22.
    Kanungo, T.: Document Degradation Models and a Methodology for Degradation Model Validation. PhD thesis, University of Washington (1996)Google Scholar
  23. 23.
    Nguyen, T., Debled-Rennesson, I.: Curvature estimation in noisy curves. In: Kropatsch, W.G., Kampel, M., Hanbury, A. (eds.) CAIP 2007. LNCS, vol. 4673, pp. 474–481. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Bertrand Kerautret
    • 1
  • Jacques-Olivier Lachaud
    • 2
  1. 1.LORIA, Nancy- Campus Scientifique, 54506 Vandœuvre -lès-Nancy Cedex 
  2. 2.LAMA, University of Savoie, 73376 Le Bourget du Lac 

Personalised recommendations