Digital Planar Surface Segmentation Using Local Geometric Patterns

  • Yukiko Kenmochi
  • Lilian Buzer
  • Akihiro Sugimoto
  • Ikuko Shimizu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4992)


This paper presents a hybrid two-step method for segmenting a 3D grid-point cloud into planar surfaces by using discrete-geometry results. Digital planes contain a finite number of local geometric patterns (LGPs). Such a LGP possesses a set of normal vectors. By using LGP properties, we first reject non-linear points from a point cloud (edge-based step), and then classify non-rejected points whose LGPs have common normal vectors into a planar-surface-point set (region-based step).


  1. 1.
    Besl, P.J., Jain, R.C.: Segmentation through variable-order surface fitting. IEEE Transactions on PAMI 10(2), 167–192 (1988)Google Scholar
  2. 2.
    Buzer, L.: A composite and quasi linear time method for digital plane recognition. In: Kuba, A., Nyúl, L.G., Palágyi, K. (eds.) DGCI 2006. LNCS, vol. 4245, pp. 331–342. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Coeurjolly, D., Sivignon, I., Dupont, F., Feschet, F., Chassery, J.-M.: On digital plane preimage structure. Discrete Applied Mathematics 151(1–3), 78–92 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Debled-Rennesson, I.: Etude et reconnaissance des droites et plans discrets. Ph.D. thesis, Université Louis Pasteur, Strasbourg (1995)Google Scholar
  5. 5.
    Horn, B.K.P.: Extended Gaussian images. Proceedings of the IEEE 72(12), 1671–1686 (1984)CrossRefGoogle Scholar
  6. 6.
    Kenmochi, Y., Imiya, A.: Combinatorial boundary of a 3D lattice point set. Journal of Visual Communication and Image Representation 17(4), 738–766 (2006)CrossRefGoogle Scholar
  7. 7.
    Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Picture Analysis. Morgan Kauffmann, San Francisco (2004)zbMATHGoogle Scholar
  8. 8.
    Reveillès, J.-P.: Combinatorial pieces in digital lines and planes. In: Vision Geometry IV. SPIE, vol. 2573, pp. 23–34 (1995)Google Scholar
  9. 9.
    Sivignon, I., Dupont, F., Chassery, J.-M.: Discrete surfaces segmentation into discrete planes. In: Klette, R., Žunić, J. (eds.) IWCIA 2004. LNCS, vol. 3322, pp. 458–473. Springer, Heidelberg (2004)Google Scholar
  10. 10.
    Stamos, I., Allen, P.K.: 3D model construction using range and image data. In: Proceedings of IEEE Conference on CVPR, vol. 1, pp. 531–536 (2000)Google Scholar
  11. 11.
    Vittone, J., Chassery, J.-M.: (n,m)-cubes and Farey nets for naive planes understanding. In: Bertrand, G., Couprie, M., Perroton, L. (eds.) DGCI 1999. LNCS, vol. 1568, pp. 76–87. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  12. 12.
    Yokoya, N., Levine, M.D.: Range image segmentation based on differential geometry: a hybrid approach. IEEE PAMI 11(6), 643–649 (1989)Google Scholar
  13. 13.
    Zhao, D., Zhang, X.: Range-data-based object surface segmentation via edges and critical points. IEEE Transactions on IP 6(6), 826–830 (1997)Google Scholar
  14. 14.
    Ziegler, G.M.: Lectures on Polytopes. Springer, New York (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Yukiko Kenmochi
    • 1
  • Lilian Buzer
    • 1
  • Akihiro Sugimoto
    • 1
    • 2
  • Ikuko Shimizu
    • 3
  1. 1.LABINFO-IGM, UMR CNRS 8049Université Paris-EstFrance
  2. 2.National Institute of InformaticsJapan
  3. 3.Tokyo University of Agriculture and TechnologyJapan

Personalised recommendations