Normals and Curvature Estimation for Digital Surfaces Based on Convolutions

  • Sébastien Fourey
  • Rémy Malgouyres
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4992)

Abstract

In this paper, we present a method that we call on-surface convolution which extends the classical notion of a 2D digital filter to the case of digital surfaces (following the cuberille model). We also define an averaging mask with local support which, when applied with the iterated convolution operator, behaves like an averaging with large support. The interesting property of the latter averaging is the way the resulting weights are distributed: they tend to decrease following a “continuous” geodesic distance within the surface. We eventually use the iterated averaging followed by convolutions with differentiation masks to estimate partial derivatives and then normal vectors over a surface. We provide an heuristics based on [14] for an optimal mask size and show results.

Keywords

Normal Vector Geodesic Distance Curvature Estimation Adjacency Relation Digital Plane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Artzy, E., Frieder, G., Herman, G.T.: The theory, design, implementation and evaluation of a three dimensional surface detection algorithm. Computer graphics and image processing 15(1), 1–23 (1981)CrossRefGoogle Scholar
  2. 2.
    Chen, L.-S., Herman, G.T., Reynolds, R.A., Udupa, J.K.: Surface shading in the cuberille environment. IEEE Journal of computer graphics and Application 5(12), 33–43 (1985)MATHCrossRefGoogle Scholar
  3. 3.
    Coeurjolly, D., Flin, F., Teytaud, O., Tougne, L.: Multigrid convergence and surface area estimation. In: Asano, T., Klette, R., Ronse, C. (eds.) Geometry, Morphology, and Computational Imaging. LNCS, vol. 2616, pp. 119–124. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Coeurjolly, D., Klette, R.: A comparative evaluation of length estimators of digital curves. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(2), 252–257 (2004)CrossRefGoogle Scholar
  5. 5.
    Debled-Rennesson, I., Reveillès, J.-P.: A linear algorithm for segmentation of digital curves. International Journal of Pattern Recognition and Artificial Intelligence 9(4), 635–662 (1995)CrossRefGoogle Scholar
  6. 6.
    Dorst, L., Smeulders, A.W.M.: Length estimators for digitized contours. Computer Vision, Graphics, and Image Processing 40(3), 311–333 (1987)CrossRefGoogle Scholar
  7. 7.
    Herman, G.T.: Discrete multidimensional Jordan surfaces. CVGIP: Graphical Models and Image Processing 54(6), 507–515 (1992)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Herman, G.T., Liu, H.K.: Three-dimensional display of human organs from computed tomograms. Computer Graphics and Image Processing 9, 1–29 (1979)CrossRefGoogle Scholar
  9. 9.
    Klette, R., Sun, H.J.: A global surface area estimation algorithm for digital regular solids. Technical report, Computer science department of the University of Auckland (September 2000)Google Scholar
  10. 10.
    Lachaud, J.-O., Vialard, A.: Geometric measures on arbitrary dimensional digital surfaces. In: Nyström, I., Sanniti di Baja, G., Svensson, S. (eds.) DGCI 2003. LNCS, vol. 2886, pp. 434–443. Springer, Heidelberg (2003)Google Scholar
  11. 11.
    Lachaud, J.-O., Vialard, A., de Vieilleville, F.: Fast, accurate and convergent tangent estimation on digital contours. Image and Vision Computing 25(10), 1572–1587 (2007)CrossRefGoogle Scholar
  12. 12.
    Lenoir, A.: Des outils pour les surfaces discrètes. PhD thesis, Université de Caen (in French) (1999)Google Scholar
  13. 13.
    Lenoir, A., Malgouyres, R., Revenu, M.: Fast computation of the normal vector field of the surface of a 3-d discrete object. In: Miguet, S., Ubéda, S., Montanvert, A. (eds.) DGCI 1996. LNCS, vol. 1176, pp. 101–112. Springer, Heidelberg (1996)Google Scholar
  14. 14.
    Malgouyres, R., Brunet, F., Fourey, S.: Binomial convolutions and derivatives estimation from noisy discretizations. In: Coeurjolly, D., et al. (eds.) DGCI 2008. LNCS, vol. 4992, pp. 369–377. Springer, Heidelberg (2008)Google Scholar
  15. 15.
    Papier, L.: Polyédrisation et visualisation d’objets discrets tridimensionnels. PhD thesis, Université Louis Pasteur, Strasbourg, France (in French) (1999)Google Scholar
  16. 16.
    Papier, L., Françon, J.: Évalutation de la normale au bord d’un objet discret 3D. Revue de CFAO et d’informatique graphique 13, 205–226 (1998)Google Scholar
  17. 17.
    Sivignon, I., Dupont, F., Chassery, J.-M.: Discrete surfaces segmentation into discrete planes. In: Klette, R., Žunić, J. (eds.) IWCIA 2004. LNCS, vol. 3322, pp. 458–473. Springer, Heidelberg (2004)Google Scholar
  18. 18.
    Stoker, J.J.: Differential geometry. Wiley, Chichester (1989)MATHGoogle Scholar
  19. 19.
    Tellier, P., Debled-Rennesson, I.: 3d discrete normal vectors. In: Bertrand, G., Couprie, M., Perroton, L. (eds.) DGCI 1999. LNCS, vol. 1568, pp. 447–458. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  20. 20.
    Windreich, G., Kiryati, N., Lohmann, G.: Voxel-based surface area estimation: from theory to practice. Pattern Recognition 36(11), 2531–2541 (2003)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Sébastien Fourey
    • 1
  • Rémy Malgouyres
    • 2
  1. 1.GREYC, UMR6072 – ENSICAEN, 6 bd maréchal Juin 14050 Caen cedexFrance
  2. 2.LAIC, EA2146 – Université Clermont 1, BP 86, Aubiére cedexFrance

Personalised recommendations