Weighted Neighbourhood Sequences in Non-Standard Three-Dimensional Grids – Metricity and Algorithms

  • Robin Strand
  • Benedek Nagy
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4992)


Recently, a distance function was defined on the face- centered cubic and body-centered cubic grids by combining weights and neighbourhood sequences. These distances share many properties with traditional path-based distance functions, such as the city-block distance, but are less rotational dependent. We present conditions for metricity and algorithms to compute the distances.


  1. 1.
    Matej, S., Lewitt, R.M.: Efficient 3D grids for image reconstruction using spherically-symmetric volume elements. IEEE Transactions on Nuclear Science 42(4), 1361–1370 (1995)CrossRefGoogle Scholar
  2. 2.
    Strand, R., Borgefors, G.: Distance transforms for three-dimensional grids with non-cubic voxels. Computer Vision and Image Understanding 100(3), 294–311 (2005)CrossRefGoogle Scholar
  3. 3.
    Fouard, C., Strand, R., Borgefors, G.: Weighted distance transforms generalized to modules and their computation on point lattices. Pattern Recognition 40(9), 2453–2474 (2007)zbMATHCrossRefGoogle Scholar
  4. 4.
    Strand, R., Nagy, B.: Distances based on neighbourhood sequences in non-standard three-dimensional grids. Discrete Applied Mathematics 155(4), 548–557 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Carr, H., Theussl, T., Möller, T.: Isosurfaces on optimal regular samples. In: Bonneau, G.-P., Hahmann, S., C.D.H. (eds.) Proceedings of the symposium on Data visualisation 2003, Eurographics Association, pp. 39–48 (2003)Google Scholar
  6. 6.
    Strand, R., Stelldinger, P.: Topology preserving marching cubes-like algorithms on the face-centered cubic grid. In: Proceedings of 14th International Conference on Image Analysis and Processing (ICIAP 2007), Modena, Italy, pp. 781–788 (2007)Google Scholar
  7. 7.
    Coeurjolly, D., Miguet, S., Tougne, L.: 2D and 3D visibility in discrete geometry: an application to discrete geodesic paths. Pattern Recognition Letters 25(5), 561–570 (2004)CrossRefGoogle Scholar
  8. 8.
    Verwer, B.J.H., Verbeek, P.W., Dekker, S.T.: An efficient uniform cost algorithm applied to distance transforms. IEEE Transactions on Pattern Analysis and Machine Intelligence 11(4), 425–429 (1989)CrossRefGoogle Scholar
  9. 9.
    Strand, R., Malmberg, F., Svensson, S.: Minimal cost-path for path-based distances. In: Petrou, M., Saramäki, T., Erçil, A., Loncaric, S. (eds.) ISPA 2007, pp. 379–384 (2007)Google Scholar
  10. 10.
    Borgefors, G.: Distance transformations in digital images. Computer Vision, Graphics, and Image Processing 34, 344–371 (1986)CrossRefGoogle Scholar
  11. 11.
    Rosenfeld, A., Pfaltz, J.L.: Distance functions on digital pictures. Pattern Recognition 1, 33–61 (1968)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Rosenfeld, A., Pfaltz, J.L.: Sequential operations in digital picture processing. Journal of the ACM 13(4), 471–494 (1966)zbMATHCrossRefGoogle Scholar
  13. 13.
    Yamashita, M., Honda, N.: Distance functions defined by variable neighborhood sequences. Pattern Recognition 17(5), 509–513 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Yamashita, M., Ibaraki, T.: Distances defined by neighborhood sequences. Pattern Recognition 19(3), 237–246 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Das, P.P., Chakrabarti, P.P.: Distance functions in digital geometry. Information Sciences 42, 113–136 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Nagy, B.: Distance functions based on neighbourhood sequences. Publicationes Mathematicae Debrecen 63(3), 483–493 (2003)zbMATHMathSciNetGoogle Scholar
  17. 17.
    Strand, R.: Weighted distances based on neighbourhood sequences. Pattern Recognition Letters 28(15), 2029–2036 (2007)CrossRefGoogle Scholar
  18. 18.
    Strand, R.: Weighted distances based on neighbourhood sequences in non-standard three-dimensional grids. In: Ersbøll, B.K., Pedersen, K.S. (eds.) SCIA 2007. LNCS, vol. 4522, pp. 452–461. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  19. 19.
    Strand, R., Nagy, B.: Weighted neighbourhood sequences in non-standard three-dimensional grids – parameter optimization. In: Brimkov, V.E., Barneva, R.P., Hauptman, H. (eds.) IWCIA 2008. LNCS, vol. 4958, pp. 51–62. Springer, Heidelberg (2008)Google Scholar
  20. 20.
    Klette, R., Rosenfeld, A.: Digital geometry: Geometric methods for digital image analysis. The Morgan Kaufmann Series in Computer Graphics. Morgan Kaufmann, San Francisco (2004)Google Scholar
  21. 21.
    Piper, J., Granum, E.: Computing distance transformations in convex and non-convex domains. Pattern Recognition 20(6), 599–615 (1987)CrossRefGoogle Scholar
  22. 22.
    Strand, R.: Shape representation with maximal path-points for path-based distances. In: Petrou, M., Saramäki, T., Erçil, A., Loncaric, S. (eds.) ISPA 2007, pp. 397–402 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Robin Strand
    • 1
  • Benedek Nagy
    • 2
  1. 1.Centre for Image AnalysisUppsala UniversityUppsalaSweden
  2. 2.Department of Computer Science, Faculty of InformaticsUniversity of DebrecenDebrecenHungary

Personalised recommendations