Advertisement

Discrete Complex Structure on Surfel Surfaces

  • Christian Mercat
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4992)

Abstract

This paper defines a theory of conformal parametrization of digital surfaces made of surfels equipped with a normal vector. The main idea is to locally project each surfel to the tangent plane, therefore deforming its aspect-ratio. It is a generalization of the theory known for polyhedral surfaces. The main difference is that the conformal ratios that appear are no longer real in general. It yields a generalization of the standard Laplacian on weighted graphs.

Keywords

Riemann Surface Tangent Plane Conformal Structure Dual Graph Black Vertex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Desbrun, M., Meyer, M., Alliez, P.: Intrinsic parameterizations of surface meshes. Computer Graphics Forum 21, 209–218 (2002)CrossRefGoogle Scholar
  2. 2.
    Desbrun, M., Kanso, E., Tong, Y.: Discrete differential forms for computational modeling. In: SIGGRAPH 2006: ACM SIGGRAPH 2006 Courses, pp. 39–54. ACM Press, New York (2006)CrossRefGoogle Scholar
  3. 3.
    Kharevych, L., Springborn, B., Schröder, P.: Discrete conformal mappings via circle patterns. ACM Trans. Graph. 25(2), 412–438 (2006)CrossRefGoogle Scholar
  4. 4.
    Gu, X., Yau, S.: Computing conformal structures of surfaces. Communications in Information and Systems 2(2), 121–146 (2002)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Gu, X., Yau, S.: Surface classification using conformal structures. International Conference on Computer Vision (2003)Google Scholar
  6. 6.
    Gu, X., Yau, S.-T.: Global conformal surface parameterization. In: SGP 2003: Proceedings of the 2003 Eurographics/ACM SIGGRAPH symposium on Geometry processing. Eurographics Association, Aire-la-Ville, Switzerland, pp. 127–137 (2003)Google Scholar
  7. 7.
    Jin, M., Wang, Y., Yau, S.-T., Gu, X.: Optimal global conformal surface parameterization. In: VIS 2004: Proceedings of the conference on Visualization 2004, pp. 267–274. IEEE Computer Society Press, Washington, DC, USA (2004)CrossRefGoogle Scholar
  8. 8.
    Lenoir, A., Malgouyres, R., Revenu, M.: Fast computation of the normal vector field of the surface of a 3-D discrete object. In: Miguet, S., Ubéda, S., Montanvert, A. (eds.) DGCI 1996. LNCS, vol. 1176, pp. 101–112. Springer, Heidelberg (1996)Google Scholar
  9. 9.
    Lenoir, A.: Fast estimation of mean curvature on the surface of a 3d discrete object. In: Ahronovitz, E. (ed.) DGCI 1997. LNCS, vol. 1347, pp. 175–186. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  10. 10.
    Malgouyres, R.: A discrete radiosity method. In: Braquelaire, A., Lachaud, J.-O., Vialard, A. (eds.) DGCI 2002. LNCS, vol. 2301, pp. 428–438. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Malgouyres, R., Burguet, J.: Strong Thinning and Polyhedrization of the Surface of a Voxel Object. Discrete Appl. Math. 125(1) (2003). In: Nyström, I., Sanniti di Baja, G., Borgefors, G. (eds.) DGCI 2000. LNCS, vol. 1953, pp. 93–114. Springer, Heidelberg (2000)Google Scholar
  12. 12.
    Farkas, H.M., Kra, I.: Riemann surfaces, 2nd edn. Springer-Verlag, New York (1992)zbMATHGoogle Scholar
  13. 13.
    Bobenko, A.I., Mercat, C., Suris, Y.B.: Linear and nonlinear theories of discrete analytic functions. Integrable structure and isomonodromic Green’s function. J. Reine Angew. Math. 583, 117–161 (2005)zbMATHMathSciNetGoogle Scholar
  14. 14.
    Mercat, C.: Discrete Riemann surfaces and the Ising model. Comm. Math. Phys. 218(1), 177–216 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Mercat, C.: Discrete riemann surfaces. In: Papadopoulos, A. (ed.) Handbook of Teichmüller Theory, vol. I. IRMA Lect. Math. Theor. Phys., Eur. Math. Soc., Zürich, vol. 11, pp. 541–575 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Christian Mercat
    • 1
  1. 1.I3MUniversité Montpellier 2 c.c. 51Montpellier cedex 5France

Personalised recommendations