Advertisement

Insertion and Expansion Operations for n-Dimensional Generalized Maps

  • Mehdi Baba-ali
  • Guillaume Damiand
  • Xavier Skapin
  • David Marcheix
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4992)

Abstract

Hierarchical representations, such as irregular pyramids, are the bases of several applications in the field of discrete imagery. So, n-dimensional ”bottom-up” irregular pyramids can be defined as stacks of successively reduced n-dimensional generalized maps (n-G-maps) [11], each n-G-map being defined from the previous level by using removal and contraction operations defined in [8]. Our goal is to build a theoretical framework for defining and handling n-dimensional ”top-down” irregular pyramids. To do so, we propose in this paper to study the definition of both insertion and expansion operations that allow to conceive these kinds of pyramids.

Keywords

Small Integer Local Degree Hierarchical Representation Image Pyramid Removal Operation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bertrand, Y., Damiand, G., Fiorio, C.: Topological Encoding of 3D Segmented Images. In: Nyström, I., Sanniti di Baja, G., Borgefors, G. (eds.) DGCI 2000. LNCS, vol. 1953, pp. 311–324. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  2. 2.
    Braquelaire, J.P., Desbarats, P., Domenger, J.P.: 3d split and merge with 3 maps. In: Workshop on Graph based Representations, Ischia, Italy, May 2001, pp. 32–43, IAPR-TC15 (2001)Google Scholar
  3. 3.
    Braquelaire, J.P., Desbarats, P., Domenger, J.P., Wüthrich, C.A.: A topological structuring for aggregates of 3d discrete objects. In: Workshop on Graph based Representations, Austria, pp. 193–202, IAPR-TC15 (1999)Google Scholar
  4. 4.
    Brisson, E.: Representing geometric structures in d dimensions: topology and order. Discrete and Computational Geometry 9(1), 387–426 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Brun, L., Kropatsch, W.G.: Dual contraction of combinatorial maps. In: Workshop on Graph based Representations, Austria, pp. 145–154, IAPR-TC15 (1999)Google Scholar
  6. 6.
    Brun, L.: Segmentation d’images couleur à base topologique, PhD Thesis, Université de Bordeaux I (1996)Google Scholar
  7. 7.
    Burt, P., Hong, T.H., Rosenfeld, A.: Segmentation and estimation of image region properties through cooperative hierarchical computation. IEEE Transactions on Systems, Man and Cybernetics 11, 802–809 (1981)CrossRefGoogle Scholar
  8. 8.
    Damiand, G., Dexet-Guiard, M., Lienhardt, P., Andres, E.: Removal and contraction operations to define combinatorial pyramids: application to the design of a spatial modeler. Image and Vision Computing 2(23), 259–269 (2005)CrossRefGoogle Scholar
  9. 9.
    Edmonds, J.: A combinatorial representation for polyhedral surfaces, Notices of the American Mathematical Society 7 (1960)Google Scholar
  10. 10.
    Fiorio, C.: Approche interpixel en analyse d’images: une topologie et des algorithms de segmentation, PhD Thesis, Université Montpellier II, 24 (1995)Google Scholar
  11. 11.
    Grasset-simon, C., Damiand, G., Lienhardt, P.: nD generalized map pyramids: Definition, representations and basic operations. Pattern Recognition 39, 527–538 (2006)zbMATHCrossRefGoogle Scholar
  12. 12.
    Jolion, J., Montanvert, A.: The adaptive pyramid: a framework for 2d image analysis. Computer Vision, Graphics and Image Processing 55, 339–348 (1992)zbMATHGoogle Scholar
  13. 13.
    Kropatsch, W.: Building irregular pyramids by dual-graph contraction. Vision, Image and Signal Processing 142, 366–374 (1995)CrossRefGoogle Scholar
  14. 14.
    Lienhardt, P.: Topological models for boundary representation: a comparison with n-dimensional generalized maps. Computer Aided Design 23, 59–82 (1991)zbMATHGoogle Scholar
  15. 15.
    Lienhardt, P.: N-dimensional generalized combinatorial maps and cellular quasimanifolds. International Journal of Computational Geometry and Applications 4(3), 275–324 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Meer, P.: Stochastic image pyramids. Computer Vision, Graphics and Image Processing 45, 269–294 (1989)CrossRefGoogle Scholar
  17. 17.
    Moutanvert, A., Meer, P., Rosenfeld, A.: Hierarchical image analysis using irregular tesselations. IEEE Transactions on Pattern Analysis and Machine Intelligence 13(4), 307–316 (1991)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Mehdi Baba-ali
    • 1
  • Guillaume Damiand
    • 2
  • Xavier Skapin
    • 1
  • David Marcheix
    • 3
  1. 1.SIC-XLIMUniversité de Poitiers, UMR CNRS 6172Futuroscope Chasseneuil CedexFrance
  2. 2.LaBRIUniversité Bordeaux 1, UMR CNRS 5800Talence CedexFrance
  3. 3.Laboratoire d’Informatique Scientifique et Industrielle (LISI), ENSMAFrance

Personalised recommendations