New Characterizations of Simple Points, Minimal Non-simple Sets and P-Simple Points in 2D, 3D and 4D Discrete Spaces

  • Michel Couprie
  • Gilles Bertrand
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4992)

Abstract

In this article, we present new results on simple points, minimal non-simple sets (MNS) and P-simple points. In particular, we propose new characterizations which hold in dimensions 2, 3 and 4, and which lead to efficient algorithms for detecting such points or sets. This work is settled in the framework of cubical complexes, and some of the main results are based on the properties of critical kernels.

References

  1. 1.
    Bertrand, G.: On P-simple points. Comptes Rendus de l’Académie des Sciences, Série Math. I(321), 1077–1084 (1995)MathSciNetGoogle Scholar
  2. 2.
    Bertrand, G.: Sufficient conditions for 3D parallel thinning algorithms. In: SPIE Vision Geometry IV, vol. 2573, pp. 52–60 (1995)Google Scholar
  3. 3.
    Bertrand, G.: On critical kernels. Technical Report IGM,2005-05 (2005), http://www.esiee.fr/~coupriem/ck
  4. 4.
    Bertrand, G.: On critical kernels. Comptes Rendus de l’Académie des Sciences, Série Math. I(345), 363–367 (2007)MathSciNetGoogle Scholar
  5. 5.
    Bertrand, G., Couprie, M.: New 2D Parallel Thinning Algorithms Based on Critical Kernels. In: Reulke, R., Eckardt, U., Flach, B., Knauer, U., Polthier, K. (eds.) IWCIA 2006. LNCS, vol. 4040, pp. 45–59. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Bertrand, G., Couprie, M.: A new 3D parallel thinning scheme based on critical kernels. In: Kuba, A., Nyúl, L.G., Palágyi, K. (eds.) DGCI 2006. LNCS, vol. 4245, pp. 580–591. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Bertrand, G., Couprie, M.: Two-dimensional parallel thinning algorithms based on critical kernels. Technical Report IGM,2006-02 (2006), http://www.esiee.fr/~coupriem/ck
  8. 8.
    Bing, R.H.: Some aspects of the topology of 3-manifolds related to the Poincaré conjecture. Lectures on modern mathematics II, 93–128 (1964)Google Scholar
  9. 9.
    Burguet, J., Malgouyres, R.: Strong thinning and polyhedric approximation of the surface of a voxel object. Discrete Applied Mathematics 125, 93–114 (2003)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Couprie, M.: Note on fifteen 2d parallel thinning algorithms. Technical Report IGM,2006-01 (2006), http://www.esiee.fr/~coupriem/ck
  11. 11.
    Couprie, M., Bertrand, G.: New characterizations, in the framework of critical kernels, of 2D, 3D and 4D minimal non-simple sets and P-simple points. Technical Report IGM2007-08 (2007), www.esiee.fr/~coupriem/ck
  12. 12.
    Couprie, M., Bertrand, G.: New characterizations of simple points in 2D, 3D and 4D discrete spaces. Technical Report IGM2007-07 (2007), www.esiee.fr/~coupriem/ck
  13. 13.
    Gau, C.-J., Kong, T.Y.: Minimal non-simple sets in 4D binary images. Graphical Models 65, 112–130 (2003)MATHCrossRefGoogle Scholar
  14. 14.
    Giblin, P.: Graphs, surfaces and homology. Chapman and Hall, Boca Raton (1981)MATHGoogle Scholar
  15. 15.
    Hall, R.W.: Tests for connectivity preservation for parallel reduction operators. Topology and its Applications 46(3), 199–217 (1992)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Kong, T.Y.: On topology preservation in 2-D and 3-D thinning. International Journal on Pattern Recognition and Artificial Intelligence 9, 813–844 (1995)CrossRefGoogle Scholar
  17. 17.
    Kong, T.Y.: Topology-preserving deletion of 1’s from 2-, 3- and 4-dimensional binary images. In: Ahronovitz, E. (ed.) DGCI 1997. LNCS, vol. 1347, pp. 3–18. Springer, Heidelberg (1997)Google Scholar
  18. 18.
    Kong, T.Y.: Minimal non-simple and minimal non-cosimple sets in binary images on cell complexes. In: Kuba, A., Nyúl, L.G., Palágyi, K. (eds.) DGCI 2006. LNCS, vol. 4245, pp. 169–188. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
    Kong, T.Y., Gau, C.-J.: Minimal non-simple sets in 4-dimensional binary images with (8-80)-adjacency. In: procs. IWCIA, pp. 318–333 (2004)Google Scholar
  20. 20.
    Kong, T.Y., Rosenfeld, A.: Digital topology: introduction and survey. Computer Vision, Graphics and Image Processing 48, 357–393 (1989)CrossRefGoogle Scholar
  21. 21.
    Kong, T.Y.: On the problem of determining whether a parallel reduction operator for n-dimensional binary images always preserves topology. In: procs. SPIE Vision Geometry II, vol. 2060, pp. 69–77 (1993)Google Scholar
  22. 22.
    Kovalevsky, V.A.: Finite topology as applied to image analysis. Computer Vision, Graphics and Image Processing 46, 141–161 (1989)CrossRefGoogle Scholar
  23. 23.
    Lohou, C., Bertrand, G.: A 3D 12-subiteration thinning algorithm based on P-simple points. Discrete Applied Mathematics 139, 171–195 (2004)MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Lohou, C., Bertrand, G.: A 3D 6-subiteration curve thinning algorithm based on P-simple points. Discrete Applied Mathematics 151, 198–228 (2005)MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Ma, C.M.: On topology preservation in 3d thinning. Computer Vision, Graphics and Image Processing 59(3), 328–339 (1994)CrossRefGoogle Scholar
  26. 26.
    Maunder, C.R.F.: Algebraic topology. Dover, london (1996)Google Scholar
  27. 27.
    Passat, N., Couprie, M., Bertrand, G.: Minimal simple pairs in the 3-d cubic grid. Technical Report IGM2007-04 (2007)Google Scholar
  28. 28.
    Ronse, C.: Minimal test patterns for connectivity preservation in parallel thinning algorithms for binary digital images. Discrete Applied Mathematics 21(1), 67–79 (1988)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Michel Couprie
    • 1
  • Gilles Bertrand
    • 1
  1. 1.LABINFO-IGM, UMR CNRS 8049Université Paris-EstFrance

Personalised recommendations