Synthetic Anabolic Agents: Steroids and Nonsteroidal Selective Androgen Receptor Modulators

  • Mario ThevisEmail author
  • Wilhelm Schänzer
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 195)


The central role of testosterone in the development of male characteristics, as well as its beneficial effects on physical performance and muscle growth, has led to the search for synthetic alternatives with improved pharmacological profiles. Hundreds of steroidal analogs have been prepared with a superior oral bioavailability, which should also possess reduced undesirable effects. However, only a few entered the pharmaceutical market due to severe toxicological incidences that were mainly attributed to the lack of tissue selectivity. Prominent representatives of anabolic-androgenic steroids (AAS) are for instance methyltestosterone, metandienone and stanozolol, which are discussed as model compounds with regard to general pharmacological aspects of synthetic AAS. Recently, nonsteroidal alternatives to AAS have been developed that selectively activate the androgen receptor in either muscle tissue or bones. These so-called selective androgen receptor modulators (SARMs) are currently undergoing late clinical trials (IIb) and will be prohibited by the World Anti-Doping Agency from January 2008. Their entirely synthetic structures are barely related to steroids, but particular functional groups allow for the tissue-selective activation or inhibition of androgen receptors and, thus, the stimulation of muscle growth without the risk of severe undesirable effects commonly observed in steroid replacement therapies. Hence, these compounds possess a high potential for misuse in sports and will be the subject of future doping control assays.


Doping Mass spectrometry Sport SARMs Steroids 



The authors thank the Ministry of the Interior of the Federal Republic of Germany and the Manfred-Donike Institute for Doping Analysis, Cologne, for their support.


  1. Arnold A, Potts GO, Beyler AL (1963) Evaluation of the protein anabolic properties of certain orally active anabolic agents based on nitrogen balance studies in rats. Endocrinology 72:408–417CrossRefGoogle Scholar
  2. Ayotte C, Goudreault D, Charlebois A (1996) Testing for natural and synthetic anabolic agents in human urine. J Chrom B 687:3–25CrossRefGoogle Scholar
  3. Beyler AL, Potts GO, Arnold A (1961) Influence of molecular unsaturation on hormonal activity pattern of certain heterocyclic steroids. Endocrinology 68:987–995CrossRefGoogle Scholar
  4. Bhasin S, Calof OM, Storer TW, Lee ML, Mazer NA, Jasuja R, Montori VM, Gao W, Dalton JT (2006) Drug insight: Testosterone and selective androgen receptor modulators as anabolic therapies for chronic illness and aging. Nat Clin Pract Endocrinol Metab 2:146–159PubMedCrossRefGoogle Scholar
  5. Bohl CE, Chang C, Mohler ML, Chen J, Miller DD, Swaan PW, Dalton JT (2004) A ligand-based approach to identify quantitative structure-activity relationships for the androgen receptor. J Med Chem 47:3765–3776PubMedCrossRefGoogle Scholar
  6. Borges CR, Miller N, Shelby M, Hansen M, White C, Slawson MH, Monti K, Crouch DJ (2007) Analysis of a challenging subset of World Anti-Doping Agency-banned steroids and antiestrogens by LC–MS–MS. J Anal Toxicol 31:125–131PubMedGoogle Scholar
  7. Bowers LD (1997) Analytical advances in detection of performance-enhancing compounds. Clin Chem 43:1299–1304PubMedGoogle Scholar
  8. Bowers LD (1998) Athletic drug testing. Clin Sports Med 17:299–318PubMedCrossRefGoogle Scholar
  9. Brooks RV, Firth RG, Sumner NA (1975) Detection of anabolic steroids by radioimmunoassay. Br J Sports Med 9:89–92PubMedCrossRefGoogle Scholar
  10. Cadilla R, Turnbull P (2006) Selective androgen receptor modulators in drug discovery: medicinal chemistry and therapeutic potential. Curr Top Med Chem 6:245–270PubMedCrossRefGoogle Scholar
  11. Casavant MJ, Blake K, Griffith J, Yates A, Copley LM (2007) Consequences of use of anabolic androgenic steroids. Pediatr Clin N Am 54:677–690CrossRefGoogle Scholar
  12. Catlin DH, Sekera MH, Ahrens BD, Starcevic B, Chang Y-C, Hatton CK (2004) Tetrahydrogestrinone: discovery, synthesis, and detection in urine. Rapid Commun Mass Spectrom 18:1245–1249PubMedCrossRefGoogle Scholar
  13. Chen J, Hwang DJ, Bohl CE, Miller DD, Dalton JT (2005a) A selective androgen receptor modulator for hormonal male contraception. J Pharmacol Exp Ther 312:546–553PubMedCrossRefGoogle Scholar
  14. Chen J, Kim J, Dalton JT (2005b) Discovery and therapeutic promise of selective androgen receptor modulators. Mol Interv 5:173–188PubMedCrossRefGoogle Scholar
  15. Clinton RO, Manson AJ, Stonner FW, Neumann HC, Christiansen RG, Clarke RL, Ackerman JH, Page DF, Dean JW, Dickinson WB, Carabateas C (1961) Steroidal[3, 2-c]pyrazoles. II. Androstanes, 19-Norandrostanes and their Unsaturated Analogs. J Am Chem Soc 83:1478–1491CrossRefGoogle Scholar
  16. Dalton JT, Mukherjee A, Zhu Z, Kirkovsky L, Miller DD (1998) Discovery of nonsteroidal androgens. Biochem Biophys Res Commun 244:1–4PubMedCrossRefGoogle Scholar
  17. Deventer K, Eenoo PV, Delbeke FT (2006) Screening for anabolic steroids in doping analysis by liquid chromatography/electrospray ion trap mass spectrometry. Biomed Chromatogr 20:429–433PubMedCrossRefGoogle Scholar
  18. Donike M, Zimmermann J (1980) Zur Darstellung von Trimethylsilyl-, Triethylsilyl- und tert.- Butyldimethylsilyl- enoläthern von Ketosteroiden für gas- chromatographische und massenspektrometrische Untersuchungen. J Chromatogr 202:483–486CrossRefGoogle Scholar
  19. Donike M, Zimmermann J, Bärwald KR, Schänzer W, Christ V, Klostermann K, Opfermann G (1984) Routinebestimmung von Anabolika in Harn. Dtsch Z Sportmed 35:14–24Google Scholar
  20. Dorfman RI, Kincl FA (1963) Relative potency of various steroids in an anabolic-androgenic assay using the castrated rat. Endocrinology 72:259–266CrossRefGoogle Scholar
  21. Dürbeck HW, Büker I (1980) Studies on anabolic steroids. The mass spectra of 17α-methyl-17β-hydroxy-1, 4-androstadien-3-one (dianabol) and its metabolites. Biomed Mass Spectrom 7: 437–445PubMedCrossRefGoogle Scholar
  22. Eisenberg E, Gordan GS (1950) The levator ani muscle of the rat as an index of myotrophic activity of steroidal hormones. J Exp Ther 99:38–44Google Scholar
  23. Emmens CW, Parkes AS (1939) The effect of route of administration on the multiple activities of testosterone and methyltestosterone in different species. J Endocrinol 1:323–331CrossRefGoogle Scholar
  24. Ercoli A, Gardi R, Vitale R (1962) Steroid-17β-yl acetals and enol ethers. New classes of orally and parenterally active hormonal derivatives. Chem Ind pp. 1284–1285Google Scholar
  25. Ferenchick GS (1991) Anabolic/androgenic steroid abuse and thrombosis: is there a connection? Med Hypotheses 35:27–31PubMedCrossRefGoogle Scholar
  26. Ferenchick G, Schwartz D, Ball M, Schwartz K (1992) Androgenic-anabolic steroid abuse and platelet aggregation: a pilot study in weight lifters. Am J Med Sci 303:78–82PubMedCrossRefGoogle Scholar
  27. Fusshöller G, Mareck U, Schmechel A, Schänzer W (2007) Long-term detection of metandienone abuse by means of the new metabolite 17β-hydroxymethyl-17α-methyl-18-norandrost-1,4,13-trien-3-one. In: Schänzer W, Geyer H, Gotzmann A, Mareck U (eds) Recent advances in doping analysis. Sport & Buch Strauss, Cologne 15:393–396Google Scholar
  28. Gao W, Dalton JT (2007a) Expanding the therapeutic use of androgens via selective androgen receptor modulators (SARMs). Drug Discov Today 12:241–248PubMedCrossRefGoogle Scholar
  29. Gao W, Dalton JT (2007b) Ockham’s razor and selective androgen receptor modulators (SARMs): are we overlooking the role of 5alpha-reductase? Mol Interv 7:10–13PubMedCrossRefGoogle Scholar
  30. Gao W, Wu Z, Bohl CE, Yang J, Miller DD, Dalton JT (2006) Characterization of the in vitro metabolism of selective androgen receptor modulator using human, rat, and dog liver enzyme preparations. Drug Metab Dispos 34:243–253PubMedCrossRefGoogle Scholar
  31. Gooren LJ, Bunck MC (2004) Androgen replacement therapy: present and future. Drugs 64:1861–1891PubMedCrossRefGoogle Scholar
  32. GTx (2006) Ostarine achieved the primary endpoint of increasing lean body mass and a secondary endpoint of improving functional performance. = 2015328. Cited 8 December 2006
  33. Hall RC (2005) Abuse of supraphysiologic doses of anabolic steroids. South Med J 98:550–555PubMedCrossRefGoogle Scholar
  34. Hatton CK, Catlin DH (1987) Detection of androgenic anabolic steroids in urine. Clin Lab Med 7:655–668PubMedGoogle Scholar
  35. Hershberger LG, Shipley EG, Meyer RK (1953) Myotrophic activity of 19-nortestosterone and other steroids determined by modified levator ani muscle method. Proc Soc Exp Biol Med 83:175–180PubMedGoogle Scholar
  36. Hickson RC, Ball KL, Falduto MT (1989) Adverse effects of anabolic steroids. Med Toxicol Adverse Drug Exp 4:254–271PubMedGoogle Scholar
  37. Horning S, Donike M (1994) High resolution GC/MS. In: Donike M, Geyer H, Gotzmann A, Mareck-Engelke U, Rauth S (eds) Recent advances in doping analysis. Sport & Buch Strauß, Cologne, pp 155–161Google Scholar
  38. Huang G, Chen H, Zhang X, Cooks RG, Ouyang Z (2007) Rapid screening of anabolic steroids in urine by reactive desorption electrospray ionization. Anal Chem 79:8327–8332PubMedCrossRefGoogle Scholar
  39. Ishak KG, Zimmerman HJ (1987) Hepatotoxic effects of the anabolic/androgenic steroids. Semin Liver Dis 7:230–236PubMedCrossRefGoogle Scholar
  40. Kerr JM, Congeni JA (2007) Anabolic-androgenic steroids: use and abuse in pediatric patients. Pediatr Clin N Am 54:771–785CrossRefGoogle Scholar
  41. Kicman AT (2009) Biochemical and physiological aspects of endogenous androgens. Handbook of Experimental Pharmacology. SpringerGoogle Scholar
  42. Kicman AT, Gower DB (2003) Anabolic steroids in sport: biochemical, clinical and analytical perspectives. Ann Clin Biochem 40:321–356PubMedCrossRefGoogle Scholar
  43. Kim J, Wu D, Hwang DJ, Miller DD, Dalton JT (2005) The para substituent of S-3-(phenoxy)-2-hydroxy-2-methyl-N-(4-nitro-3-trifluoromethyl-phenyl)-prop ionamides is a major structural determinant of in vivo disposition and activity of selective androgen receptor modulators. J Pharmacol Exp Ther 315:230–239PubMedCrossRefGoogle Scholar
  44. Kindermann W (2006) Kardiovaskuläre Nebenwirkungen von anabol-androgenen Steroiden. Herz 31:566–573PubMedCrossRefGoogle Scholar
  45. Kochakian CD (1950) Comparison of protein anabolic property of various androgens in the castrated rat. Am J Physiol 160:53–61PubMedGoogle Scholar
  46. Kochakian CD (1976) Metabolic effects of anabolic-androgenic steroids in experimental animals. In: Kochakian CD (ed) Anabolic-androgenic steroids (handbook of experimental pharmacology). Springer, Berlin, pp 5–44Google Scholar
  47. Kuuranne T, Leinonen A, Schänzer W, Kamber M, Kostiainen R, Thevis M (2008) Aryl-propionamide-derived selective androgen receptor modulators: LC–MS/MS characterization of the in vitro synthesized metabolites for doping control purposes. Drug Metab Dispos 36: 571–581PubMedCrossRefGoogle Scholar
  48. Leinonen A, Kuuranne T, Kostiainen R (2002) Liquid chromatography/mass spectrometry in anabolic steroid analysis – optimization and comparison of three ionization techniques: electrospray ionization, atmospheric pressure chemical ionization and atmospheric pressure photoionization. J Mass Spectrom 37:693–698PubMedCrossRefGoogle Scholar
  49. Leinonen A, Kuuranne T, Kotiaho T, Kostiainen R (2004) Screening of free 17-alkyl-substituted anabolic steroids in human urine by liquid chromatography–electrospray ionization tandem mass spectrometry. Steroids 69:101–109PubMedCrossRefGoogle Scholar
  50. Luke JL, Farb A, Virmani R, Sample RH (1990) Sudden cardiac death during exercise in a weight lifter using anabolic androgenic steroids: pathological and toxicological findings. J Forensic Sci 35:1441–1447PubMedGoogle Scholar
  51. Macdonald BS, Sykes PJ, Adhikary PM, Harkness RA (1971) The identification of 17 -hydroxy-17-methyl-1, 4-androstadien-3-one as a metabolite of the anabolic steroid drug 17 -hydroxy- 17-methyl-1, 4-androstadien-3-one in man. Steroids 18:753–766PubMedCrossRefGoogle Scholar
  52. Maisel AQ (1965) The hormone quest. Random House, New YorkGoogle Scholar
  53. Marcos J, Pascual JA, de la Torre X, Segura J (2002) Fast screening of anabolic steroids and other banned doping substances in human urine by gas chromatography/tandem mass spectrometry. J Mass Spectrom 37:1059–1073PubMedCrossRefGoogle Scholar
  54. Mareck U, Thevis M, Guddat S, Gotzmann A, Bredehöft M, Geyer H, Schänzer W (2004) Comprehensive sample preparation for anabolic steroids, glucocorticosteroids, beta-receptor blocking agents, selected anabolic androgenic steroids and buprenorphine in human urine. In: Schänzer W, Geyer H, Gotzmann A, Mareck U (eds) Recent advances in doping analysis. Sport und Buch Strauss, Cologne, pp 65–68Google Scholar
  55. Marhefka CA, Gao W, Chung K, Kim J, He Y, Yin D, Bohl C, Dalton JT, Miller DD (2004) Design, synthesis, and biological characterization of metabolically stable selective androgen receptor modulators. J Med Chem 47:993–998PubMedCrossRefGoogle Scholar
  56. Masse R, Ayotte C, Bi HG, Dugal R (1989) Studies on anabolic steroids. III. Detection and characterization of stanozolol urinary metabolites in humans by gas chromatography-mass spectrometry. J Chromatogr 497:17–37PubMedCrossRefGoogle Scholar
  57. Masse R, Bi HG, Ayotte C, Du P, Gelinas H, Dugal R (1991) Studies on anabolic steroids V. Sequential reduction of methandienone and structurally related steroid A-ring substituents in humans: gas chromatographic-mass spectrometric study of the corresponding urinary metabolites. J Chromatogr 562:323–340PubMedCrossRefGoogle Scholar
  58. Mateus-Avois L, Mangin P, Saugy M (2005) Use of ion trap gas chromatography-multiple mass spectrometry for the detection and confirmation of 3′hydroxystanozolol at trace levels in urine for doping control. J Chromatogr B Anal Technol Biomed Life Sci 816:193–201CrossRefGoogle Scholar
  59. Mazzarino M, Botre F (2006) A fast liquid chromatographic/mass spectrometric screening method for the simultaneous detection of synthetic glucocorticoids, some stimulants, anti-oestrogen drugs and synthetic anabolic steroids. Rapid Comm Mass Spectrom 20:3465–3476CrossRefGoogle Scholar
  60. Meystre C, Frey H, Voser W, Wettstein A (1956) Gewinnung von 1, 4-Bisdehydro-3-oxosteroiden. Helvetica Chimica Acta 39:734–742CrossRefGoogle Scholar
  61. Miles JW, Grana WA, Egle D, Min KW, Chitwood J (1992) The effect of anabolic steroids on the biomechanical and histological properties of rat tendon. J Bone Joint Surg Am 74:411–422PubMedGoogle Scholar
  62. Miner JN, Chang W, Chapman MS, Finn PD, Hong MH, Lopez FJ, Marschke KB, Rosen J, Schrader W, Turner R, van Oeveren A, Viveros H, Zhi L, Negro-Vilar A (2007) An orally active selective androgen receptor modulator is efficacious on bone, muscle, and sex function with reduced impact on prostate. Endocrinology 148:363–373PubMedCrossRefGoogle Scholar
  63. Mohler ML, Nair VA, Hwang DJ, Rakov IM, Patil R, Miller DD (2005) Nonsteroidal tissue selective androgen receptor modulators: a promising class of clinical candidates. Exp Opin Ther Patents 15:1565–1585CrossRefGoogle Scholar
  64. Munoz-Guerra J, Carreras D, Soriano C, Rodriguez C, Rodriguez AF (1997) Use of ion trap gas chromatography – tandem mass spectrometry for detection and confirmation of anabolic substances at trace levels in doping analysis. J Chromatogr B 704:129–141CrossRefGoogle Scholar
  65. Nielen MW, Bovee TF, van Engelen MC, Rutgers P, Hamers AR, van Rhijn JH, Hoogenboom LR (2006) Urine testing for designer steroids by liquid chromatography with androgen bioassay detection and electrospray quadrupole time-of-flight mass spectrometry identification. Anal Chem 78:424–431PubMedCrossRefGoogle Scholar
  66. Ostrowski J, Kuhns JE, Lupisella JA, Manfredi MC, Beehler BC, Krystek SR Jr, Bi Y, Sun C, Seethala R, Golla R, Sleph PG, Fura A, An Y, Kish KF, Sack JS, Mookhtiar KA, Grover GJ, Hamann LG (2006) Pharmacological and X-ray structural characterization of a novel selective androgen receptor modulator: potent hyperanabolic stimulation of skeletal muscle with hypostimulation of prostate in rats. Endocrinology 48:4–12CrossRefGoogle Scholar
  67. Perera MA, Yin D, Wu D, Chan KK, Miller DD, Dalton J (2006) In vivo metabolism and final disposition of a novel nonsteroidal androgen in rats and dogs. Drug Metab Dispos 34:1713–1721PubMedCrossRefGoogle Scholar
  68. Pope HG Jr, Katz DL (1994) Psychiatric and medical effects of anabolic-androgenic steroid use. A controlled study of 160 athletes. Arch Gen Psychiatry 51:375–382PubMedGoogle Scholar
  69. Potts GO, Arnold A, Beyler AL (1960) Comparative myotrophic and nitrogen retaining effects of several steroids. Endocrinology 67:849–854PubMedCrossRefGoogle Scholar
  70. Potts GO, Arnold A, Beyler AL (1976) Dissociation of the androgenic and other hormonal activities from the protein anabolic effect of steroids. In: Kochakian CD (ed) Anabolic–androgenic steroids. Springer, Berlin, pp 361–406Google Scholar
  71. Poujol N, Wurtz JM, Tahiri B, Lumbroso S, Nicolas JC, Moras D, Sultan C (2000) Specific recognition of androgens by their nuclear receptor. A structure–function study. J Biol Chem 275:24022–24031PubMedCrossRefGoogle Scholar
  72. Pozo OJ, Van Eenoo P, Deventer K, Delbeke FT (2007a) Development and validation of a qualitative screening method for the detection of exogenous anabolic steroids in urine by liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 389:1209–1224PubMedCrossRefGoogle Scholar
  73. Pozo OJ, Van Eenoo P, Deventer K, Delbeke FT (2007b) Ionization of anabolic steroids by adduct formation in liquid chromatography electrospray mass spectrometry. J Mass Spectrom 42:497–516PubMedCrossRefGoogle Scholar
  74. Quincey RV, Gray CH (1967) The metabolism of [1, 2–3H]17-alpha-methyltestosterone in human subjects. J Endocrinol 37:37–55PubMedCrossRefGoogle Scholar
  75. Rommerts FFG (2004) Testosterone: an overview of biosynthesis, transport, metabolism and non-genomic actions. In: Nieschlag E, Behre HM (eds) Testosterone – action, deficiency, substitution. Cambridge University Press, Cambridge, pp 1–38CrossRefGoogle Scholar
  76. Rongone EL, Segaloff A (1962) Isolation of urinary metabolites of 17alpha-methyltestosterone. J Biol Chem 237:1066–1067PubMedGoogle Scholar
  77. Rongone EL, Segaloff A (1963) In vivo metabolism of Δ1–17α-methyltestosterone in man. Steroids 1:170–1843Google Scholar
  78. Ruzicka L, Wettstein A (1935) Sexualhormone VII. Über die künstliche Herstellung des Testikelhormons Testosteron (Androsten-3-on-17-ol). Helv Chim Acta 18:1264–1275CrossRefGoogle Scholar
  79. Ruzicka L, Goldberg MW, Rosenberg HR (1935) Sexualhormone X. Herstellung des 17-Methyltestosteron und anderer Androsten- und Androstanderivate. Zusammenhänge zwischen chemischer Konstitution und männlicher Hormonwirkung. Helv Chim Acta 18:1487–1498CrossRefGoogle Scholar
  80. Sack JS, Kish KF, Wang C, Attar RM, Kiefer SE, An Y, Wu GY, Scheffler JE, Salvati ME, Krystek SR Jr, Weinmann R, Einspahr HM (2001) Crystallographic structures of the ligand-binding domains of the androgen receptor and its T877A mutant complexed with the natural agonist dihydrotestosterone. Proc Natl Acad Sci USA 98:4904–4909PubMedCrossRefGoogle Scholar
  81. Sandberg AA, Slaunwhite WR Jr (1956) Metabolism of 4–C14-testosterone in human subjects. I. Distribution in bile, blood, feces and urine. J Clin Invest 35:1331–1339PubMedCrossRefGoogle Scholar
  82. Saugy M, Cardis C, Robinson N, Schweizer C (2000) Test methods: anabolics. Baillieres Best Pract Res Clin Endocrinol Metab 14:111–133PubMedCrossRefGoogle Scholar
  83. Schänzer W (1996) Metabolism of anabolic androgenic steroids. Clin Chem 42:1001–1020PubMedGoogle Scholar
  84. Schänzer W (1998) Detection of exogenous anabolic androgenic steroids. In: Karch SB (ed) Drug abuse handbook. CRC Press, Boca Raton, pp 671–689Google Scholar
  85. Schänzer W, Donike M (1996) Metabolism of anabolic steroids in man: synthesis and use of reference substances for identification of anabolic steroid metabolites. Anal Chim Acta 275:23–48CrossRefGoogle Scholar
  86. Schänzer W, Opfermann G, Donike M (1990) Metabolism of stanozolol: identification and synthesis of urinary metabolites. J Steroid Biochem 36:153–174PubMedCrossRefGoogle Scholar
  87. Schänzer W, Geyer H, Donike M (1991) Metabolism of metandienone in man: identification and synthesis of conjugated excreted urinary metabolites, determination of excretion rates and gas chromatographic–mass spectrometric identification of bis-hydroxylated metabolites. J Steroid Biochem Mol Biol 38:441–464PubMedCrossRefGoogle Scholar
  88. Schänzer W, Opfermann G, Donike M (1992) 17-Epimerization of 17 alpha- methyl anabolic steroids in humans: metabolism and synthesis of 17 alpha- hydroxy- 17ß- methyl steroids. Steroids 57:537–549PubMedCrossRefGoogle Scholar
  89. Schänzer W, Delahaut P, Geyer H, Machnik M, Horning S (1996a) Long- term detection and identification of metandienone and stanozolol abuse in athletes by gas chromatography–high- resolution mass spectrometry. J Chromatogr B 687:93–108CrossRefGoogle Scholar
  90. Schänzer W, Horning S, Opfermann G, Donike M (1996b) Gas chromatography/mass spectometry identification of long-term excreted metabolites of the anabolic steroid 4-chloro-1, 2-dehydro-17alpha-methyltestosterone in humans. J Steroid Biochem Mol Biol 57:363–376PubMedCrossRefGoogle Scholar
  91. Schänzer W, Geyer H, Fusshöller G, Halatcheva N, Kohler M, Parr MK, Guddat S, Thomas A, Thevis M (2006) Mass spectrometric identification and characterization of a new long-term metabolite of metandienone in human urine. Rapid Commun Mass Spectrom 20:2252–2258PubMedCrossRefGoogle Scholar
  92. Segaloff A, Gabbard RB, Carriere BT, Rongone EL (1965) The metabolism of 4-14c-17-alpha-methyltestosterone. Steroids 58(suppl 1):149–158PubMedGoogle Scholar
  93. Su TP, Pagliaro M, Schmidt PJ, Pickar D, Wolkowitz O, Rubinow DR (1993) Neuropsychiatric effects of anabolic steroids in male normal volunteers. Jama 269:2760–2764PubMedCrossRefGoogle Scholar
  94. Thevis M, Schänzer W (2005) Mass spectrometric analysis of androstan-17beta-ol-3-one and androstadiene-17beta-ol-3-one Isomers. J Am Soc Mass Spectrom 16:1660–1669PubMedCrossRefGoogle Scholar
  95. Thevis M, Schänzer W (2007a) Emerging drugs – potential for misuse in sport and doping control detection strategies. Mini-Rev Med Chem 7:533–539CrossRefGoogle Scholar
  96. Thevis M, Schänzer W (2007b) Mass spectrometry in sports drug testing: Structure characterization and analytical assays. Mass Spectrom Rev 26:79–107PubMedCrossRefGoogle Scholar
  97. Thevis M, Geyer H, Mareck U, Schänzer W (2005a) Screening for unknown synthetic steroids in human urine by liquid chromatography-tandem mass spectrometry. J Mass Spectrom 40:955–962PubMedCrossRefGoogle Scholar
  98. Thevis M, Makarov AA, Horning S, Schänzer W (2005b) Mass spectrometry of stanozolol and its analogues using electrospray ionization and collision-induced dissociation with quadrupole-linear ion trap and linear ion trap-orbitrap hybrid mass analyzers. Rapid Commun Mass Spectrom 19:3369–3378PubMedCrossRefGoogle Scholar
  99. Thevis M, Fußhöller G, Geyer H, Mareck U, Sigmund G, Koch A, Thomas A, Schänzer W (2006a) Detection of stanozolol and its major metabolites in human urine by liquid chromatography-tandem mass spectrometry. Chromatographia 64:441–446CrossRefGoogle Scholar
  100. Thevis M, Kamber M, Schänzer W (2006b) Screening for metabolically stable aryl-propionamide-derived selective androgen receptor modulators for doping control purposes. Rapid Commun Mass Spectrom 20:870–876PubMedCrossRefGoogle Scholar
  101. Thevis M, Kohler M, Maurer J, Schlörer N, Kamber M, Schänzer W (2007a) Screening for 2-quinolinone-derived selective androgen receptor agonists in doping control analysis. Rapid Commun Mass Spectom 21:3477–3486CrossRefGoogle Scholar
  102. Thevis M, Kohler M, Schänzer W (2007b) Mass spectrometry of new growth promoting drugs: hydantoin-derived selective androgen receptor modulators and growth hormone secretagogues. In: Schänzer W, Geyer H, Gotzmann A, Mareck U (eds) Recent advances in doping analysis. Sport & Buch Strauß, Cologne 15:263–272Google Scholar
  103. Thiblin I, Lindquist O, Rajs J (2000) Cause and manner of death among users of anabolic androgenic steroids. J Forensic Sci 45:16–23PubMedGoogle Scholar
  104. Todd T (1987) Anabolic steroids: the gremlins of sport. J Sport Hist 14:87–107PubMedGoogle Scholar
  105. Trout GJ, Sultani M, Goebel C, Howe C, Kazlauskas R (2007) Miscellaneous projects in sports drug testing at the National Measurement Institute, Australia, 2006. In: Schänzer W, Geyer H, Gotzmann A, Mareck U (eds) Recent advances in doping analysis. Sport & Buch Strauss, Cologne 15:327–336Google Scholar
  106. Vischer E, Meystre C, Wettstein A (1955) Mikrobiologische Reaktionen.6. Mikrobiologische Herstellung Von 1-Dehydro-Steroiden. Helv Chim Acta 38:835–840CrossRefGoogle Scholar
  107. WADA (2004) Minimum required performance limits for detection of prohibited substances. (06-02-2007)
  108. Waller CL, Juma BW, Gray LE Jr, Kelce WR (1996) Three-dimensional quantitative structure–activity relationships for androgen receptor ligands. Toxicol Appl Pharmacol 137:219–227PubMedCrossRefGoogle Scholar
  109. Wu D, Wu Z, Yang J, Nair VA, Miller DD, Dalton JT (2006) Pharmacokinetics and metabolism of a selective androgen receptor modulator (SARM) in rats–implication of molecular properties and intensive metabolic profile to investigate ideal pharmacokinetic characteristics of a propanamide in preclinical study. Drug Metab Dispos 34:483–494PubMedGoogle Scholar
  110. Yin D, He Y, Perera MA, Hong SS, Marhefka C, Stourman N, Kirkovsky L, Miller DD, Dalton J (2003) Key structural features of nonsteroidal ligands for binding and activation of the androgen receptor. Mol Pharmacol 63:211–223PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Center for Preventive Doping Research – Institute of BiochemistryGerman Sport University CologneCologneGermany

Personalised recommendations