Skip to main content

Complex Joint Geometry

  • Chapter

Abstract

The finite element method is particularly suited to analyse complex joint geometries. Adhesively bonded joints are increasingly being used in engineering applications where the loading mode, the adherends shape and the material behaviour are extremely difficult to simulate with a closed form approach. A detailed description of finite element studies concerning non-conventional adhesive joints is presented in this chapter. Various types of joints, local geometrical features such as the spew fillet and adherend rounding, three dimensional analyses, hybrid joints and repair techniques are discussed. Special techniques to save computer power are also treated. It is shown that the finite element method offers unlimited possibilities for stress analysis but also presents some numerical problems at sharp edges.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Actis RL, Szabó BA (2003) Analysis of bonded and fastened repairs by the p-version of the finite-element method. Comput Math Appl 46: 1–14

    Article  MATH  MathSciNet  Google Scholar 

  • Adams RD, Atkins RW, Harris JA, Kinloch AJ (1986) Stress analysis and failure properties of carbon-fibre-reinforced-plastic/steel double-lap joints. J Adhes 20: 29–53

    Article  Google Scholar 

  • Adams RD, Chambers SH, Del Strother PJA, Peppiatt NA (1973) Rubber model for adhesive lap joints. J Strain Anal 8: 52–57

    Article  Google Scholar 

  • Adams RD, Davies R (1996) Strength of joints involving composites. J Adhes 59: 171–182

    Article  Google Scholar 

  • Adams RD, Davies R (2002) Strength of lap shear joints. In: The mechanics of adhesion (Dillard DA and Pocius AV, ed.). Amsterdam: Elsevier, pp. 111–144.

    Google Scholar 

  • Adams RD, Harris JA (1987) The influence of local geometry on the strength of adhesive joints. Int J Adhes Adhes 7: 69–80

    Article  Google Scholar 

  • Adams RD, Peppiatt NA (1974) Stress analysis of adhesive-bonded lap joints. J Strain Anal 9: 185–196

    Article  Google Scholar 

  • Al–Samhann A, Darwish SMH (2003) Strength prediction of weld-bonded joints. Int J Adhes Adhes 23: 23–28

    Article  Google Scholar 

  • Amijima S, Fujii T (1989) A simple stress analysis method for adhesive bonded tapered joints. Int J Adhes Adhes 9: 155–160

    Article  Google Scholar 

  • Andreassi L, Baudille R, Biancolini ME (2007) Spew formation in a single lap joint. Int J Adhes Adhes 27: 458–468

    Article  Google Scholar 

  • Apalak MK (1999) Geometrically non-linear analysis of adhesively bonded corner joints. J Adhes Sci Technol 13: 1253–1285

    Article  Google Scholar 

  • Apalak MK (2000) Geometrically non-linear analysis of an adhesively bonded modified double containment corner joint — I. J Adhes Sci Technol 14: 1159–1177

    Article  Google Scholar 

  • Apalak MK (2002) On the non-linear elastic stresses in an adhesively bonded T-joint with double support. J Adhes Sci Technol 16: 459–491

    Article  Google Scholar 

  • Apalak MK, Apalak Z, Gunes R (2003) Thermal non-linear elastic stress analysis of an adhesively bonded T-joint. J Adhes Sci Technol 17: 995–1016

    Article  Google Scholar 

  • Apalak MK, Davies R (1993) Analysis and design of adhesively bonded comer joints. Int J Adhes Adhes 13: 219–235

    Article  Google Scholar 

  • Apalak MK, Davies R (1994) Analysis and design of adhesively bonded corner joints: fillet effect. Int J Adhes Adhes 14: 163–174

    Article  Google Scholar 

  • Apalak MK, Engin A (2004) Effect of adhesive free-end geometry on the initiation and propagation of damaged zones in adhesively bonded lap joints. J Adhes Sci Technol 18: 529–559

    Article  Google Scholar 

  • Apalak MK, Gunes R (2007) Elastic flexural behaviour of an adhesively bonded single lap joint with functionally graded adherends. Mater Des 28: 1597–1617

    Google Scholar 

  • Ávila AF, Bueno PO (2004) Stress analysis on a wavy-lap bonded joint for composites. Int J Adhes Adhes 24: 407–414

    Google Scholar 

  • Bahei–El–Din YA, Dvorak GJ (2001) New designs of adhesive joints for thick composite laminates. Compos Sci Technol 61: 19–40

    Article  Google Scholar 

  • Belingardi G, Goglio L, Rossetto M (2002) Impact behaviour of bonded built-up beams: experimental results. Int J Adhes Adhes 25: 173–180

    Article  Google Scholar 

  • Blackman BRK, Hadavinia H, Kinloch AJ, Paraschi M, Williams JG (2003) The calculation of adhesive fracture energies in mode I: revisiting the tapered double cantilever beam (TDCB) test. Eng Fract Mech 70: 233–248

    Article  Google Scholar 

  • Bogdanovich AE, Kizhakkethara I (1999) Three-dimensional finite element analysis of double-lap composite adhesive bonded joint using submodeling approach. Compos Part B-Eng 30: 537–551

    Article  Google Scholar 

  • Bouiadjra BB, Fekirini H, Belhouari M, Boutabout B, Serier B (2007) Fracture energy for repaired cracks with bonded composite patch having two adhesive bands in aircraft structures. Comp Mater Sci 40: 20–26

    Article  Google Scholar 

  • Campilho RDSG, de Moura MFSF, Domingues JJMS (2007) Stress and failure analyses of scarf repaired CFRP laminates using a cohesive damage model. J Adhes Sci Technol 21: 855–870

    Google Scholar 

  • Chan WS, Vedhagiri S (2001) Analysis of composite bonded/bolted joints used in repairing. J Compos Mater 35: 1045–1061

    Article  Google Scholar 

  • Chen Z (1985) The failure and fracture analysis of adhesive bonds, PhD thesis, Department of Mechanical Engineering, University of Bristol, UK

    Google Scholar 

  • Cherry BW, Harrison NL (1970) The optimum profile for a lap joint. J Adhes 2: 125–128

    Article  Google Scholar 

  • Crocombe AD, Adams RD (1981) Influence of the spew fillet and other parameters on the stress distribution in the single lap joint. J Adhes 13: 141–155

    Article  Google Scholar 

  • da Silva LFM, Adams RD (2002) The strength of adhesively bonded T-joints. Int J Adhes Adhes 22: 311–315

    Article  Google Scholar 

  • da Silva LFM, Adams RD (2007a) Techniques to reduce the peel stresses in adhesive joints with composites. Int J Adhes Adhes 27: 227–235

    Google Scholar 

  • da Silva LFM, Adams RD (2007b) Joint strength predictions for adhesive joints to be used over a wide temperature range. Int J Adhes Adhes 27: 362–379

    Article  Google Scholar 

  • da Silva LFM, Adams RD (2007c) Adhesive joints at high and low temperatures using similar and dissimilar adherends and dual adhesives. Int J Adhes Adhes 27: 216–226

    Article  Google Scholar 

  • Darwish SM (2004) Analysis of weld-bonded dissimilar materials. Int J Adhes Adhes 24: 347–354

    Article  Google Scholar 

  • Darwish SM, Al–Samhann A (2004) Design rationale of weld-bonded joints. Int J Adhes Adhes 24: 367–377

    Article  Google Scholar 

  • de Moura MFSF, Daniaud R, Magalhães AG (2006) Simulation of mechanical behaviour of composite bonded joints containing strip defects. Int J Adhes Adhes 26: 464–473

    Google Scholar 

  • Deng J, Lee MMK (2007) Effect of plate end and adhesive spew geometries on stresses in retrofitted beams bonded with a CFRP plate. Compos Part B-Eng, doi:10.1016/j.compositesb.2007.05.004 <http://dx.doi.org/10.1016/j.compositesb.2007.05.004>

    Google Scholar 

  • Dorn L, Liu W (1993) The stress state and failure properties of adhesive-bonded plastic/metal joints. Int J Adhes Adhes 13: 21–31

    Article  Google Scholar 

  • Du J, Lindeman DD, Yarusso DJ (2004) Modeling the peel performance of pressure-sensitive adhesives. J Adhes 80: 601–612

    Article  Google Scholar 

  • Dvorak GJ, Zhang J, Canyurt O (2001) Adhesive tongue-and-groove joints for thick composite laminates. Compos Sci Technol 61: 1123–1142

    Article  Google Scholar 

  • Feih S, Shercliff HR (2005) Adhesive and composite failure prediction of single-L joint structures under tensile loading. Int J Adhes Adhes 25: 47–59

    Article  Google Scholar 

  • Fessel G, Broughton JG, Fellows NA, Durodola JF, Hutchinson AR (2007) Evaluation of different lap-shear joint geometries for automotive applications. Int J Adhes Adhes 27: 574–583

    Article  Google Scholar 

  • Fitton MD, Broughton JG (2005) Variable modulus adhesives: an approach to optimized joint performance. Int J Adhes Adhes 25: 329–336

    Article  Google Scholar 

  • Gannesh VK, Choo TS (2002) Modulus graded composite adherends for single-lap bonded joints. J Compos Mater 36: 1757–1767

    Article  Google Scholar 

  • Goland M, Reissner E (1944) The stresses in cemented joints. J Appl Mech 66: A17–A27

    Google Scholar 

  • Grassi M, Cox B, Zhang X (2006) Simulation of pin-reinforced single-lap composite joints. Compos Sci Technol 66: 1623–1638

    Article  Google Scholar 

  • Groth HL (1988) Stress singularities and fracture at interface corners in bonded joints. Int J Adhes Adhes 8: 107–113

    Article  Google Scholar 

  • Groth HL, Nordlund P (1991) Shape optimization of bonded joints. Int J Adhes Adhes 11: 204–212

    Article  Google Scholar 

  • Guild FJ, Potter KD, Heinrich J, Adams RD, Wisnom MR (2001) Understanding and control of adhesive crack propagation in bonded joints between carbon fibre composite adherends II. Finite element analysis. Int J Adhes Adhes 21: 435–443

    Google Scholar 

  • Gunnion AJ, Herszberg I (2006) Parametric study of scarf joints in composite structures. Compos Struct 75: 364–376

    Article  Google Scholar 

  • Harris JA, Adams RD (1984) Strength prediction of bonded single lap joints by non-linear finite element methods. Int J Adhes Adhes 4: 65–78.

    Article  Google Scholar 

  • Hart–Smith LJ (1973) Adhesive bonded double lap joints. NASA CR–112235

    Google Scholar 

  • Hildebrand M (1994) Non-linear analysis and optimization of adhesively bonded single lap joints between fibre-reinforced plastics and metals. Int J Adhes Adhes 14: 261–267

    Article  Google Scholar 

  • Kaye R, Heller M (2005) Through-thickness shape optimisation of typical double lap-joints including effects of differential thermal contraction during curing. Int J Adhes Adhes 25: 227–238

    Article  Google Scholar 

  • Kaye RH, Heller M (2002) Through-thickness shape optimisation of bonded repairs and lap-joints. Int J Adhes Adhes 22: 7–21

    Article  Google Scholar 

  • Kilic B, Madenci E, Ambur DR (2006) Influence of adhesive spew in bonded single-lap joints. Eng Fract Mech 73: 1472–1490

    Article  Google Scholar 

  • Kim H (2003) The influence of adhesive bondline thickness imperfections on stresses in composite joints. J Adhes 79: 621–642

    Article  Google Scholar 

  • Kim JK, Lee DG (2001) Thermal characteristics of tubular single lap adhesive joints under axial loads. J Adhes Sci Technol 15: 1511–1528

    Article  Google Scholar 

  • Kim JK, Lee DG (2004) Effects of applied pressure and temperature during curing operation on the strength of tubular single-lap adhesive joints. J Adhes Sci Technol 18: 87–107

    Article  Google Scholar 

  • Kim KS, Kim WT, Lee DG, Jun EJ (1992) Optimal tubular adhesive-bonded lap joint of the carbon fiber epoxy composite shaft. Compos Struct 21: 163–176

    Article  Google Scholar 

  • Kim YG, Oh JH, Lee DG (1999) Strength of adhesively-bonded tubular single lap carbon/epoxy composite-steel joints. J Compos Mater 33: 1897–1917

    Google Scholar 

  • Kwon JW, Lee DG (2000) The effects of surface roughness and bond thickness on the fatigue life of adhesively bonded tubular single lap joints. J Adhes Sci Technol 14: 1085–1102

    Article  Google Scholar 

  • Lang TP, Mallick PK (1998) Effect of spew geometry on stresses in single lap adhesive joints. Int J Adhes Adhes 18: 167–177

    Article  Google Scholar 

  • Lang TP, Mallick PK (1999) The e!ect of recessing on the stresses in adhesively bonded single-lap joints. Int J Adhes Adhes 19: 257–271

    Article  Google Scholar 

  • Liljedahl CDM, Crocombe AD, Wahab MA, Ashcroft IA (2007) Modelling the environmental degradation of adhesively bonded aluminium and composite joints using a CZM approach. Int J Adhes Adhes 27: 505–518

    Article  Google Scholar 

  • Lin W–H, Jen M–HR (1999) The strength of bolted and bonded single-lapped composite joints in tension. J Compos Mater 33: 640–666

    Google Scholar 

  • Liu J, Liu J, Sawa T (2004) Strength and failure of bulky adhesive joints with adhesively-bonded columns. J Adhes Sci Technol 18: 1613–1623

    Article  Google Scholar 

  • Liu J, Sawa T (2001) Stress analysis and strength evaluation of single-lap adhesive joints combined with rivets under external bending moments. J Adhes Sci Technol 15: 43–61

    Article  Google Scholar 

  • Liu J, Sawa T (2003) Strength and finite element analyses of single-lap joints with adhesively-bonded columns. J Adhes Sci Technol 17: 1773–1784

    Article  Google Scholar 

  • Marcadon V, Nadot Y, Roy A, Gacougnolle JL (2006) Fatigue behaviour of T-joints for marine applications. Int J Adhes Adhes 26: 481–489

    Article  Google Scholar 

  • Nakagawa F, Sawa T (2001) Photoelastic thermal stress measurements in scarf adhesive joints under uniform temperature changes. J Adhes Sci Technol 15: 119–135

    Article  Google Scholar 

  • Nakagawa F, Sawa T, Nakano Y, Katsuo M (1999) Two-dimensional finite element thermal stress analysis of adhesive butt joints containing some hole defects. J Adhes Sci Technol 13: 309–323

    Article  Google Scholar 

  • Odi RA, Friend CM (2002) A comparative study of finite element models for the bonded repair of composite structures. J Reinf Plast Comp 21: 311–332

    Article  Google Scholar 

  • Odi RA, Friend CM (2004) An improved 2D model for bonded composite joints. Int J Adhes Adhes 24: 389–405

    Article  Google Scholar 

  • Oh JH (2007) Strength prediction of tubular composite adhesive joints under torsion. Compos Sci Technol 67: 1340–1347

    Article  Google Scholar 

  • Okafor AC, Singh N, Enemuoh UE, Rao SV (2005) Design, analysis and performance of adhesively bonded composite patch repair of cracked aluminum aircraft panels. Compos Struct 71: 258–270

    Article  Google Scholar 

  • Olia M, Rossettos JN (1996) Analysis of adhesively bonded joints with gaps subjected to bending. Int J Solids Struct 33: 2681–2693

    Article  MATH  Google Scholar 

  • Patrick RL (ed.) (1976) Treatise on adhesion and adhesives – Structural adhesives with emphasis on aerospace applications, Vol. 4. Marcel Dekker, Inc., New York

    Google Scholar 

  • Peppiatt NA (1974) Stress analysis of adhesiv joints, PhD thesis, Department of Mechanical Engineering, University of Bristol, UK

    Google Scholar 

  • Pires I, Quintino L, Durodola JF, Beevers A (2003) Performance of bi-adhesive bonded aluminium lap joints. Int J Adhes Adhes 23: 215–223

    Google Scholar 

  • Renton WJ, Vinson JR (1975) The efficient design of adhesive bonded joints. J Adhes 7: 175–193

    Article  Google Scholar 

  • Richardson G, Crocombe AD, Smith PA (1993) Comparison of two- and three-dimensional finite element analyses of adhesive joints. Int J Adhes Adhes 13: 193–200

    Article  Google Scholar 

  • Rispler AR, Tong L, Steven GP, Wisnom MR (2000) Shape optimisation of adhesive fillets. Int J Adhes Adhes 20: 221–231

    Article  Google Scholar 

  • Sabelkin V, Mall S, Hansen MA, Vandawaker RM, Derriso M (2007) Investigation into cracked aluminum plate repaired with bonded composite patch. Compos Struct 79: 55–66

    Article  Google Scholar 

  • Sancaktar E, Kumar S (2000) Selective use of rubber toughening to optimize lap-joint strength. J Adhes Sci Technol 14: 1265–1296

    Article  Google Scholar 

  • Sancaktar E, Nirantar P (2003) Increasing strength of single lap joints of metal adherends by taper minimization. J Adhes Sci Technol 17: 655–675

    Article  Google Scholar 

  • Sancaktar E, Simmons SR (2000) Optimization of adhesively-bonded single lap joints by adherend notching. J Adhes Sci Technol 14: 1363–1404

    Article  Google Scholar 

  • Schiermeier JE, Kansakar R, Mong D, Ransom JB, Aminpour MA, Stroud WJ (2001) p-Version interface elements in global/local analysis. Int J Numer Meth Eng 53: 181–206

    Article  Google Scholar 

  • Semerdjiev S (1970) Metal to metal adhesive bonding. Business Book Limited, London, UK

    Google Scholar 

  • Serrano E (2001) Glued-in rods for timber structures – a 3D model and finite element parameter studies. Int J Adhes Adhes 21: 115–127

    Article  Google Scholar 

  • Soutis C, Hu FZ (1997) Design and performance of bonded patch repairs of composite structures. Prc Instn Mech Engrs Part G 211: 263–271

    Article  Google Scholar 

  • Srinivas S (1975) Analysis of bonded joints. NASA TN D-7855

    Google Scholar 

  • Temiz S (2006) Application of bi-adhesive in double-strap joints subjected to bending moment. J Adhes Sci Technol 20: 1547–1560

    Article  Google Scholar 

  • Tong L, Sun X (2003) Nonlinear stress analysis for bonded patch to curved thin-walled structures. Int J Adhes Adhes 23: 349–364

    Article  Google Scholar 

  • Towse A (1999) The use of Weibull statistics for predicting cohesive failure in double lap joints. PhD Dissertation, University of Bristol, UK

    Google Scholar 

  • Tsai MY, Morton J (1995) The effect of a spew fillet on adhesive stress distributions in laminated composite single-lap joints. Compos Struct 32: 123–131

    Article  Google Scholar 

  • Vallée T, Keller T (2006) Adhesively bonded lap joints from pultruded GFRP profiles. Part III: Effects of chamfers. Compos Part B-Eng 37: 328–336

    Google Scholar 

  • Volkersen O (1938) Die nietkraftoerteilung in zubeanspruchten nietverbindungen mit konstanten loschonquerschnitten. Luftfahrtforschung 15: 41–47

    Google Scholar 

  • Yan Z–M, You M, Yi X–S, Zheng X–L, Li Z (2007) A numerical study of parallel slot in adherend on the stress distribution in adhesively bonded aluminum single lap joint. Int J Adhes Adhes 27: 687–695

    Article  Google Scholar 

  • You M, Yan Z–M, Zheng X–L, Yu H–Z, Li Z (2007) A numerical and experimental study of gap length on adhesively bonded aluminum double-lap joint. Int J Adhes Adhes 27: 696–702

    Article  Google Scholar 

  • Zhao X (1991) Stress and failure analysis of adhesively bonded lap joints, PhD thesis, Department of Mechanical Engineering, University of Bristol, UK

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Öchsner, A., da Silva, L.F., Adams, R.D. (2008). Complex Joint Geometry. In: da Silva, L.F.M., Öchsner, A. (eds) Modeling of Adhesively Bonded Joints. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79056-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79056-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79055-6

  • Online ISBN: 978-3-540-79056-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics