Circumventing the Relative Degree Condition in Sliding Mode Design

  • Christopher Edwards
  • Thierry Floquet
  • Sarah Spurgeon
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 375)


A continuous time sliding mode is generated by means of discontinuities in the applied injection signals, about a surface in the state space [17, 33, 40]. The discontinuity surface (usually known as the sliding surface) is attained from any initial condition ideally in a finite time interval. Provided the injection signals are designed appropriately, the motion when constrained to the surface (the sliding mode) is completely insensitive to so-called matched uncertainties, i.e. uncertainties that lie within the range space of the matrix distributing the injection signals. Much early work in this area related to control problems and assumed all of the states were available for use both in the switching function evaluation and also by the control law. For practical application however, the case when only limited state information is available is of interest.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barbot, J.P., Boukhobza, T., Djemai, M.: Sliding mode observer for triangular input form. In: Proc. 1996 IEEE CDC, Kobe, Japan (1996)Google Scholar
  2. 2.
    Bartolini, G., Ferrara, A., Levant, A., Usai, E.: On second order sliding mode controllers. In: Young, K.K.D., Ozguner, U. (eds.) Variable structure systems, sliding mode and nonlinear control. Lecture Notes in Control and Information Sciences, vol. 247. Springer, London (1999)Google Scholar
  3. 3.
    Benlatreche, A., Knittel, D., Ostertag, E.: Robust decentralised control strategies for large-scale web handling systems. Control Engineering Practice (2007), published online (June 2006), doi: 10.1016/j.conengprac.2006.03.003Google Scholar
  4. 4.
    de Wit, C.C., Slotine, J.J.E.: Sliding observers in robot manipulators. Automatica 27, 859–864 (1991)CrossRefGoogle Scholar
  5. 5.
    Chen, C.L., Lin, K.C., Jang, M.J.: On chattering free output feedback sliding mode design for MIMO linear systems. In: Proc. 16th IFAC World Congress, Prague, CZ (2005)Google Scholar
  6. 6.
    Chen, J., Patton, R., Zhang, H.: Design of unknown input observers and robust fault detection filters. International Journal of Control 63, 85–105 (1996)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Chen, J., Zhang, H.: Robust detection of faulty actuators via unknown input observers. International Journal of Systems Science 22, 1829–1839 (1991)MATHCrossRefGoogle Scholar
  8. 8.
    Corless, M., Tu, J.: State and input estimation for a class of uncertain systems. Automatica 34, 757–764 (1998)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Darouach, M.: On the novel approach to the design of unknown input observers. IEEE Transactions on Automatic Control 39, 698–699 (1994)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Darouach, M., Zasadzinski, M., Xu, S.J.: Full-order observers for linear systems with unknown inputs. IEEE Transactions on Automatic Control 39, 606–609 (1994)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Djemai, M., Barbot, J.P., Glumineau, A., Boisliveau, G.: Nonlinear flux sliding mode observer. In: Proc. 1999 IEEE CSCC 1999, Athens, Greece (1999)Google Scholar
  12. 12.
    Drakunov, S.V.: Sliding-mode Observer Based on Equivalent Control Method. In: Proc 1992 IEEE CDC, Tucson, Arizona (1992)Google Scholar
  13. 13.
    Drakunov, S.V., Utkin, V.I.: Sliding mode observers. A Tutorial. In: Proc. 1995 IEEE CDC, New-Orleans (US) (1995)Google Scholar
  14. 14.
    Drazenovic, B.: The Invariance Conditions in Variable Structure Systems. Automatica 5, 287–295 (1969)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Edwards, C., Spurgeon, S.K.: On the development of discontinuous observers. International Journal of Control 59, 1211–1229 (1994)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Edwards, C., Spurgeon, S.K.: Sliding mode stabilisation of uncertain systems using only output information. International Journal of Control 62, 1129–1144 (1995)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Edwards, C., Spurgeon, S.K.: Sliding mode control: theory and applications. Taylor and Francis, London (1998)Google Scholar
  18. 18.
    Edwards, C., Spurgeon, S.K., Patton, R.: Sliding mode observers for fault detection and isolation. Automatica 36, 541–553 (2000)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Edwards, C.: A comparison of sliding mode and unknown input observers for fault reconstruction. In: Proc. 2004 IEEE CDC, Nassau, Bahamas (2004)Google Scholar
  20. 20.
    Edwards, C., Tan, C.P.: Sensor fault tolerant control using sliding mode observers. Control Engineering Practice 14, 897–908 (2006)CrossRefGoogle Scholar
  21. 21.
    Floquet, T., Barbot, J.P., Perruquetti, W.: A finite time observer for flux estimation in the induction machine. In: Proc. IEEE Conf. Contr. Appl., Glasgow, Scotland (2002)Google Scholar
  22. 22.
    Floquet, T., Barbot, J.P., Perruquetti, W., Djemai, M.: On the robust fault detection via a sliding mode disturbance observer. International Journal of Control 77, 622–629 (2004)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Floquet, T., Barbot, J.P.: A canonical form for the design of unknown input sliding mode observers. In: Edwards, C., Fossas-Colet, E., Fridman, L. (eds.) Advances in Variable Structure and Sliding Mode Control. Lecture Notes in Control and Information Sciences, vol. 334. Springer, Berlin (2006)CrossRefGoogle Scholar
  24. 24.
    Fridman, L., Levant, A.: Higher order sliding modes. In: Perruquetti, W., Barbot, J.P. (eds.) Sliding Mode Control in Engineering. Control Engineering Series, vol. 11. Dekker, New York (2002)Google Scholar
  25. 25.
    Haskara, I., Ozguner, U., Utkin, V.I.: On sliding mode observers via equivalent control approach. International Journal of control 71, 1051–1067 (1998)MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Hautus, M.L.J.: Strong detectability and observers. Linear Algebra and its Applications 50, 353–368 (1983)MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Hernandez, J., Barbot, J.P.: Sliding observer-based feedback control for flexible joints manipulator. Automatica 32, 1243–1254 (1996)MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Hou, M., Muller, P.C.: Design of observers for linear systems with unknown inputs. IEEE Transactions on Automatic Control 37, 871–875 (1992)MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Koc, H., Knittel, D., de Mathelin, M., Abba, G.: Modeling and robust control of winding systems for elastic webs. IEEE Transactions on Control Systems Technology 10, 197–208 (2002)CrossRefGoogle Scholar
  30. 30.
    Kwan, C.M.: Further results on variable output feedback controllers. IEEE Transactions on Automatic Control 46, 1505–1508 (2001)MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Levant, A.: Robust exact differentiation via sliding mode technique. Automatica 34, 379–384 (1998)MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Perruquetti, W., Floquet, T., Borne, P.: A note on sliding observer and controller for generalized canonical forms. In: Proc. IEEE CDC, Tampa, Florida, US (1998)Google Scholar
  33. 33.
    Perruquetti, W., Barbot, J.P. (eds.): Sliding Mode Control in Engineering. Control Engineering Series, vol. 11. Dekker, New York (2002)Google Scholar
  34. 34.
    Saadaoui, H., Manamanni, N., Djemai, M., Barbot, J.P., Floquet, T.: Exact differentiation and sliding mode observers for switched Lagrangian systems. Nonlinear Analysis Theory, Methods & Applications 65, 1050–1069 (2006)MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Shyu, K.K., Tsai, Y.W., Lai, C.K.: A dynamic output feedback controller for mismatched uncertain variable structure systems. Automatica 37, 775–779 (2001)MATHMathSciNetGoogle Scholar
  36. 36.
    Slotine, J.J., Hedrick, J.K., Misawa, E.A.: On sliding observers for nonlinear systems. ASME J. Dyn. Syst. Measurement Control 109, 245–252 (1987)MATHCrossRefGoogle Scholar
  37. 37.
    Sussman, H.J., Kokotovic, P.V.: The peaking phenomenon and the global stabilization of nonlinear systems. IEEE Transactions on Automatic Control 36, 424–440 (1991)CrossRefGoogle Scholar
  38. 38.
    Tan, C.P., Edwards, C.: An LMI approach for designing sliding mode observers. International Journal of Control 74, 1559–1568 (2001)MATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    Tan, C.P., Edwards, C.: Sliding mode observers for robust detection and reconstruction of actuator and sensor faults. Int. J. of robust and Nonlinear Control 13, 443–463 (2003)MATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Utkin, V.I.: Sliding Modes in Control and Optimization. Springer, Berlin (1992)MATHGoogle Scholar
  41. 41.
    Utkin, V.I., Guldner, J., Shi, J.: Sliding mode control in electromechanical systems. Taylor and Francis, London (1999)Google Scholar
  42. 42.
    Walcott, B.L., Zak, S.H.: State observation of nonlinear uncertain dynamical systems. IEEE Transactions on Automatic Control 32, 166–170 (1987)MATHCrossRefMathSciNetGoogle Scholar
  43. 43.
    Xiong, Y., Saif, M.: Sliding Mode Observer for Nonlinear Uncertain Systems. IEEE Transactions on Automatic Control 46, 2012–2017 (2001)MATHCrossRefMathSciNetGoogle Scholar
  44. 44.
    Yan, X.Y., Spurgeon, S.K., Edwards, C.: Dynamic Output Feedback Sliding Mode Control for a Class of Nonlinear Systems with Mismatched Uncertainty. European Journal of Control 11, 1–10 (2005)CrossRefMathSciNetGoogle Scholar
  45. 45.
    Zak, S.H., Hui, S.: On variable structure output feedback controllers for uncertain dynamic systems. IEEE Transactions on Automatic Control 38, 1509–1512 (1993)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Christopher Edwards
    • 1
  • Thierry Floquet
    • 2
  • Sarah Spurgeon
    • 1
  1. 1.Control and Instrumentation Research GroupUniversity of LeicesterUK
  2. 2.LAGIS UMR CNRS 8146Ecole Centrale de LilleVilleneuve-d’AscqFrance

Personalised recommendations