Skip to main content

Abstract

The gene content of any genome is a rich mosaic of genes that have originated at different times during evolution. Among the most interesting properties related to gene age is the fact that younger genes tend to show accelerated evolutionary rates with respect to older genes. Here, we use a large number of closely related mammalian genomes to gain further insights into the relationship between gene age and evolutionary rate. We define a group of primate-specific genes that are absent from 11 non-primate mammalian genomes as well as from other eukaryotic genomes. These genes, of very recent origin, show the highest evolutionary rate and the shortest protein length. We discuss how these results may shed light on understanding the proposed mechanisms for the origin of lineage-specific, novel genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abeln S, Deane CM (2005) Fold usage on genomes and protein fold evolution. Proteins 60:690–700

    Article  PubMed  CAS  Google Scholar 

  2. Albà MM, Castresana J (2005) Inverse relationship between evolutionary rate and age of mammalian genes. Mol Biol Evol 22:598–606

    Article  PubMed  Google Scholar 

  3. Albà MM, Castresana J (2007) On homology searches by protein Blast and the characterization of the age of genes. BMC Evol Biol 7:53

    Article  PubMed  Google Scholar 

  4. Altschul SF et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  5. Begun DJ, Lindfors HA, Thompson ME, Holloway AK (2006) Recently evolved genes identified from Drosophila yakuba and D. erecta accessory gland expressed sequence tags. Genetics 172:1675–1681

    Article  PubMed  CAS  Google Scholar 

  6. Birney E et al (2007) Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447:799–816

    Article  PubMed  CAS  Google Scholar 

  7. Cai JJ, Woo PC, Lau SK, Smith DK, Yuen KY (2006) Accelerated evolutionary rate may be responsible for the emergence of lineage-specific genes in ascomycota. J Mol Evol 63:1–11

    Article  PubMed  CAS  Google Scholar 

  8. Chen L, DeVries AL, Cheng CH (1997) Evolution of antifreeze glycoprotein gene from a trypsinogen gene in Antarctic notothenioid fish. Proc Natl Acad Sci USA 94:3811–3816

    Article  PubMed  CAS  Google Scholar 

  9. Choi IG, Kim SH (2006) Evolution of protein structural classes and protein sequence families. Proc Natl Acad Sci USA 103:14056–14061

    Article  PubMed  CAS  Google Scholar 

  10. Clamp M et al (2007) Distinguishing protein-coding and noncoding genes in the human genome. Proc Natl Acad Sci USA 04:19428–33

    Article  Google Scholar 

  11. Clark AG et al (2007) Evolution of genes and genomes on the Drosophila phylogeny. Nature 450:203–218

    Article  PubMed  Google Scholar 

  12. Daubin V, Ochman H (2004) Bacterial genomes as new gene homes: the genealogy of ORFans in E. coli. Genome Res 14:1036–1042

    Article  PubMed  CAS  Google Scholar 

  13. Dolstra H et al (1999) A human minor histocompatibility antigen specific for B cell acute lymphoblastic leukemia. J Exp Med 189:301–308

    Article  PubMed  CAS  Google Scholar 

  14. Domazet-Loso T, Tautz D (2003) An evolutionary analysis of orphan genes in Drosophila. Genome Res 13:2213–2219

    Article  PubMed  CAS  Google Scholar 

  15. Domazet-Loso T, Brajkovic J, Tautz D (2007) A phylostratigraphy approach to uncover the genomic history of major adaptations in metazoan lineages. Trends Genet 23:533–9

    Article  PubMed  CAS  Google Scholar 

  16. Duan Z, Feller AJ, Toh HC, Makastorsis T, Seiden MV (1999) TRAG-3, a novel gene, isolated from a taxol-resistant ovarian carcinoma cell line. Gene 229:75–81

    Article  PubMed  CAS  Google Scholar 

  17. Elhaik E, Sabath N, Graur D (2006) The “inverse relationship between evolutionary rate and age of mammalian genes” is an artifact of increased genetic distance with rate of evolution and time of divergence. Mol Biol Evol 23:1–3

    Article  PubMed  CAS  Google Scholar 

  18. Flicek P et al (2007) Ensembl 2008. Nucleic Acids Res 36:0707–14

    Article  Google Scholar 

  19. Frith MC et al (2006) The abundance of short proteins in the mammalian proteome. PLoS Genet 2:e52

    Article  PubMed  Google Scholar 

  20. Furney SJ, Alba MM, Lopez-Bigas N (2006) Differences in the evolutionary history of disease genes affected by dominant or recessive mutations. BMC Genomics 7:165

    Article  PubMed  Google Scholar 

  21. Gibbs RA et al (2007) Evolutionary and biomedical insights from the rhesus macaque genome. Science 316:222–234

    Article  PubMed  CAS  Google Scholar 

  22. Goldovsky L et al (2005) CoGenT + +: an extensive and extensible data environment for computational genomics. Bioinformatics 21:3806–3810

    Article  PubMed  CAS  Google Scholar 

  23. Harris MA et al (2004) The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res 32:D258–261

    Article  PubMed  CAS  Google Scholar 

  24. Hurst LD, Smith NG (1999) Do essential genes evolve slowly? Curr Biol 9:747–750

    Article  PubMed  CAS  Google Scholar 

  25. Iwabe N, Kuma K, Miyata T (1996) Evolution of gene families and relationship with organismal evolution: rapid divergence of tissue-specific genes in the early evolution of chordates. Mol Biol Evol 13:483–493

    PubMed  CAS  Google Scholar 

  26. Johnson ME et al (2001) Positive selection of a gene family during the emergence of humans and African apes. Nature 413:514–519

    Article  PubMed  CAS  Google Scholar 

  27. Kouprina N et al (2004) The SPANX gene family of cancer/testis-specific antigens: rapid evolution and amplification in African great apes and hominids. Proc Natl Acad Sci USA 101:3077–3082

    Article  PubMed  CAS  Google Scholar 

  28. Lander ES et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  PubMed  CAS  Google Scholar 

  29. Levine MT, Jones CD, Kern AD, Lindfors HA, Begun DJ (2006) Novel genes derived from noncoding DNA in Drosophila melanogaster are frequently X-linked and exhibit testis-biased expression. Proc Natl Acad Sci USA 103:9935–9939

    Article  PubMed  CAS  Google Scholar 

  30. Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate genes. Science 290:1151–1155

    Article  PubMed  CAS  Google Scholar 

  31. Martinez-Morales JR, Henrich T, Ramialison M, Wittbrodt J (2007) New genes in the evolution of the neural crest differentiation program. Genome Biol 8:R36

    Article  PubMed  Google Scholar 

  32. Miyata T, Suga H (2001) Divergence pattern of animal gene families and relationship with the Cambrian explosion. BioEssays 23:1018–1027

    Article  PubMed  CAS  Google Scholar 

  33. Nurminsky DI, Nurminskaya MV, De Aguiar D, Hartl DL (1998) Selective sweep of a newly evolved sperm-specific gene in Drosophila. Nature 396:572–575

    Article  PubMed  CAS  Google Scholar 

  34. Ohno S (1984) Birth of a unique enzyme from an alternative reading frame of the preexisted, internally repetitious coding sequence. Proc Natl Acad Sci USA 81:2421–2425

    Article  PubMed  CAS  Google Scholar 

  35. Okamura K, Feuk L, Marques-Bonet T, Navarro A, Scherer SW (2006) Frequent appearance of novel protein-coding sequences by frameshift translation. Genomics 88:690–697

    Article  PubMed  CAS  Google Scholar 

  36. Pal C, Papp B, Lercher MJ (2006) An integrated view of protein evolution. Nat Rev Genet 7:337–348

    Article  PubMed  CAS  Google Scholar 

  37. Schittek B et al (2001) Dermcidin: a novel human antibiotic peptide secreted by sweat glands. Nat Immunol 2:1133–1137

    Article  PubMed  CAS  Google Scholar 

  38. Schmidt HA, Strimmer K, Vingron M, von Haeseler A (2002) TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18:502–504

    Article  PubMed  CAS  Google Scholar 

  39. Seo TK, Kishino H, Thorne JL (2004) Estimating absolute rates of synonymous and nonsynonymous nucleotide substitution in order to characterize natural selection and date species divergences. Mol Biol Evol 21:1201–1213

    Article  PubMed  CAS  Google Scholar 

  40. Stoye J, Evers D, Meyer F (1998) Rose: generating sequence families. Bioinformatics 14:157–163

    Article  PubMed  CAS  Google Scholar 

  41. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  42. Waterston RH et al (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562

    Article  PubMed  CAS  Google Scholar 

  43. Wootton JC, Federhen S (1996) Analysis of compositionally biased regions in sequence databases. Methods Enzymol 266:554–571

    Article  PubMed  CAS  Google Scholar 

  44. Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24: 1586–1591

    Article  PubMed  CAS  Google Scholar 

  45. Zhang G et al (2007) Identification and characterization of insect-specific proteins by genome data analysis. BMC Genomics 8:93

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Toll-Riera, M., Castresana, J., Albà, M.M. (2008). Accelerated Evolution of Genes of Recent Origin. In: Pontarotti, P. (eds) Evolutionary Biology from Concept to Application. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78993-2_3

Download citation

Publish with us

Policies and ethics