Skip to main content

An Overview of Evolutionary Biology Concepts for Functional Annotation: Advances and Challenges

  • Chapter
Evolutionary Biology from Concept to Application

Numerous genome sequencing projects have yielded more and more data to help analyze and gain a better understanding of genetic diversity in the living world. Genome annotation enables us to decipher raw data and identify proteincoding genes and their function. After structural annotation, the next step is predicting protein function (functional annotation). All the genes currently available in the sequenced genomes will never be studied experimentally, and so the most reliable and accurate theoretical approaches need to be considered for function prediction. Different approaches have already been developed for functional annotation. Here we emphasize the use of evolutionary biology concepts as an improved and sensitive method for predicting protein function. In the future, functional annotation based on evolutionary biology could be included in a more general approach to study the impact of the environment on the genome at the community scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balandraud N, Gouret P, Danchin EG, Blanc M, Zinn D, Roudier J, Pontarotti P (2005) A rigorous method for multigenic families functional annotation: the peptidyl arginine deiminase (PADs) proteins family example. BMC Genomics 6:153

    Article  PubMed  CAS  Google Scholar 

  2. DeLong EF, Preston CM, Mincer T, Rich V, Hallam SJ, Frigaard NU, Martinez A, Sullivan MB, Edwards R, Brito BR, Chisholm SW, Karl DM (2006) Community genomics among stratified microbial assemblages in the ocean’s interior. Science 311:496–503

    Article  PubMed  CAS  Google Scholar 

  3. Engelhardt BE, Jordan MI, Muratore KE, Brenner SE (2005) Protein molecular function prediction by Bayesian phylogenomics. PLoS Comput Biol 1:432–445

    Article  CAS  Google Scholar 

  4. Fitch WM, Markowitz E (1970) An improved method for determining codon variability in a gene and its application to the rate of fixation of mutations in evolution. Biochem Genet 4:579–593

    Article  PubMed  CAS  Google Scholar 

  5. Galagan JE, Henn MR, Ma LJ, Cuomo CA, Birren B (2005) Genomics of the fungal kingdom: insights into eukaryotic biology. Genome Res 15:1620–1631

    Article  PubMed  CAS  Google Scholar 

  6. Ganfornina MD, Sanchez D (1999) Generation of evolutionary novelty by functional shift. BioEssays 21:432–439

    Article  PubMed  CAS  Google Scholar 

  7. Gaucher EA, Gu X, Miyamoto MM, Benner SA (2002) Predicting functional divergence in protein evolution by site-specific rate shifts. Trends Biochem Sci 27:315–321

    Article  PubMed  CAS  Google Scholar 

  8. Gouret P, Vitiello V, Balandraud N, Gilles A, Pontarotti P, Danchin EG (2005) FIGENIX: intelligent automation of genomic annotation: expertise integration in a new software platform. BMC Bioinformatics 6:198

    Article  PubMed  Google Scholar 

  9. Levasseur A, Gouret P, Lesage-Meessen L, Asther M, Asther M, Record E, Pontarotti P (2006) Tracking the connection between evolutionary and functional shifts using the fungal lipase/ feruloyl esterase A family. BMC Evol Biol 6:92

    Article  PubMed  Google Scholar 

  10. Levasseur A, Orlando L, Bailly X, Milinkovitch MC, Danchin EG, Pontarotti P (2007) Conceptual bases for quantifying the role of the environment on gene evolution: the participation of positive selection and neutral evolution. Biol Rev Camb Philos Soc. 82:551–572

    Article  PubMed  Google Scholar 

  11. Messier W, Stewart CB (1997) Episodic adaptive evolution of primate lysozymes. Nature 385: 151–154

    Article  PubMed  CAS  Google Scholar 

  12. Miyata T, Yasunaga T (1980) Molecular evolution of mRNA: a method for estimating evolutionary rates of synonymous and amino acid substitutions from homologous nucleotide sequences and its application. J Mol Evol 16:23–36

    Article  PubMed  CAS  Google Scholar 

  13. Nielsen R, Yang Z (1998) Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene. Genetics 148:929–936

    PubMed  CAS  Google Scholar 

  14. Paillisson A, Levasseur A, Gouret P, Callebaut I, Bontoux M, Pontarotti P, Monget P (2007) Bromodomain testis-specific protein is expressed in mouse oocyte and evolves faster than its ubiquitously expressed paralogs BRD2, − 3, and − 4. Genomics 89:215–223

    Article  PubMed  CAS  Google Scholar 

  15. Sjolander K (2004) Phylogenomic inference of protein molecular function: advances and challenges. Bioinformatics 20:170–179

    Article  PubMed  Google Scholar 

  16. Suzuki Y, Gojobori T (1999) A method for detecting positive selection at single amino acid sites. Mol Biol Evol 16:1315–1328

    PubMed  CAS  Google Scholar 

  17. Yang Z (1998) Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution. Mol Biol Evol 15:568–573

    PubMed  CAS  Google Scholar 

  18. Yang Z, Bielawski JP (2000) Statistical methods for detecting molecular adaptation. Trends Ecol Evol 15:496–503

    Article  PubMed  Google Scholar 

  19. Yang Z, Nielsen R (2002) Codon-substitution models for detecting molecular adaptation at individual sites along specific lineages. Mol Biol Evol 19:908–909

    PubMed  CAS  Google Scholar 

  20. Yang ZH (1996) Among-site rate variation and its impact on phylogenetic analyses. Trends Ecol Evol 11:367–372

    Article  Google Scholar 

  21. Yu M, Irwin DM (1996) Evolution of stomach lysozyme: the pig lysozyme gene. Mol Phylogenet Evol 5:298–308

    Article  PubMed  CAS  Google Scholar 

  22. Zhang J, Kumar S, Nei M (1997) Small-sample tests of episodic adaptive evolution: a case study of primate lysozymes. Mol Biol Evol 14:1335–1338

    PubMed  CAS  Google Scholar 

  23. Zhang J, Rosenberg HF, Nei M (1998) Positive Darwinian selection after gene duplication in primate ribonuclease genes. Proc Natl Acad Sci USA 95:3708–3713

    Article  PubMed  CAS  Google Scholar 

  24. Zhang J, Nielsen R, Yang Z (2005) Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. Mol Biol Evol 22:2472–2479

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Levasseur, A., Pontarotti, P. (2008). An Overview of Evolutionary Biology Concepts for Functional Annotation: Advances and Challenges. In: Pontarotti, P. (eds) Evolutionary Biology from Concept to Application. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78993-2_13

Download citation

Publish with us

Policies and ethics