Phylogeography and Conservation of the Rare South African Fruit Chafer Ichnestoma stobbiai (Coleoptera: Scarabaeidae)

  • Ute Kryger
  • Clarke H. Scholtz


Ichnestoma stobbiai is an endangered fruit chafer (Scarabaeidae: Cetoniinae) that occurs in small habitat fragments of South Africa. The adults of this species are short-lived and the females are flightless. Thus, the vagility of these beetles is extremely low. Prompted by the recent discovery of morphological diver-gence between geographic populations, this genetic study aimed to assess genetic differentiation within and among these different populations. DNA sequencing of the cytochrome c oxidase subunit 1 mitochondrial gene was used to determine the genetic composition of the populations. Most populations revealed low haplotype diversity. Phylogenetic analysis of the sequence data resulted in a basal polytomy. Nested clade analysis inferred allopatric fragmentation for all significant clades. This reconfirms the original hypothesis that the extant populations represent relicts of a single, formerly widely distributed species. All habitat patches should be protected and a detailed plan for genetic augmentation should be worked out.


Dung Beetle Nest Clade Gauteng Province Basal Polytomy Recent Fragmentation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bell KL, Yeates DK, Moritz C, Monteith GB (2003) Molecular phylogeny and biogeography of the dung beetle genus Temnoplectron Westwood (Scarabaeidae: Scarabaeinae) from Australia’s wet tropics. Mol Phylogenet Evol 31:741–753CrossRefGoogle Scholar
  2. 2.
    Beerli P (1997–2001) Migrate: documentation and program, part of Lamarc. Version 1.1. Revised 30 April 2001.
  3. 3.
    Burkey TV (1989) Extinction in nature reserves: the effect of fragmentation and the importance of dispersal between reserve fragments. Oikos 55:75–81CrossRefGoogle Scholar
  4. 4.
    Burkey TV (1997) Metapopulation extinction in fragmented landscapes: using bacteria and protozoa communities as model ecosystems. Am Nat 150:568–591PubMedCrossRefGoogle Scholar
  5. 5.
    Cabrero-Sanudo F, Zardoya R (2003) Phylogenetic relationships of Iberian Aphodiini (Coleoptera: Scarabaeidae) based on morphological and molecular data. Mol Phylogenet Evol 31: 1084–1100CrossRefGoogle Scholar
  6. 6.
    Clarke TE, Levin DB, Kavanaugh DH, Reimchen TE (2001) Rapid evolution in the Nebria gregaria group (Coleoptera: Carabidae) and the paleogeography of the Queen Charlotte islands. Evolution 55:1408–1418PubMedGoogle Scholar
  7. 7.
    Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659PubMedCrossRefGoogle Scholar
  8. 8.
    Crandall KA, Templeton AR (1993) Empirical tests of some predictions from coalescent theory with applications to intraspecific phylogeny reconstruction. Genetics 134:959–969PubMedGoogle Scholar
  9. 9.
    Crandall KA, Templeton AR (1996) Applications of intraspecific phylogenetics. In: Harvey PH, Leigh Brown AJ, Maynard Smith J, Nee S (eds) New uses for new phylogenies. Oxford University Press, New York, pp 81–99Google Scholar
  10. 10.
    Davis ALV, Scholtz CH, Deschodt C (2005) A dung beetle survey of selected Gauteng nature reserves: implications for conservation of the provincial scarabaeine fauna. Afr Entomol 13: 1–16Google Scholar
  11. 11.
    Diogo AC, Vogler AP, Gimenez A, Gallego D, Galian J (1999) Conservation genetics of Cicindela deserticoloides, an endangered tiger beetle endemic to southeastern Spain. J Insect Conserv 3:117–123CrossRefGoogle Scholar
  12. 12.
    Donnelly P, Tavare S (1986) The ages of alleles and a coalescent. Adv Appl Probab 18:1–19CrossRefGoogle Scholar
  13. 13.
    Felsenstein J (1982) Numerical methods for inferring evolutionary trees. Q Rev Biol 57:379–404CrossRefGoogle Scholar
  14. 14.
    Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  15. 15.
    Felsenstein J (1988) Phylogenies from molecular sequences: inference and reliability. Annu Rev Genet 22:521–565PubMedCrossRefGoogle Scholar
  16. 16.
    Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, CambridgeGoogle Scholar
  17. 17.
    Gonzalez A, Lawton JH, Gilbert FS, Blackburn TM, Evans-Freke I (1998) Meta-population dynamics, abundance, and distribution in a microecosystem. Science 281:2045–2047PubMedCrossRefGoogle Scholar
  18. 18.
    Gu X, Zhang J (1997) A simple method for estimating the parameters of substitution rate variation among sites. Mol Biol Evol 14:1106–1113PubMedGoogle Scholar
  19. 19.
    Hasegawa M, Kishino H, Yano T-A (1985) Dating of the human-ape splitting by a molecular clock of mitochondroial DNA. J Mol Evol 22:160–174PubMedCrossRefGoogle Scholar
  20. 20.
    Hebert PDN, Ratnasingham S, DeWaard JR (2003) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc R Soc Lond Ser B 270:96–99CrossRefGoogle Scholar
  21. 21.
    Hillis DM, Bull JJ (1993) An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst Biol 42:182–192Google Scholar
  22. 22.
    Holm E (1992) Revision of the African Cetoninae V: genus Ichnestoma Gory & Percheron (including Gariep Péringuey) (Coleoptera: Scarabaeidae). Ann Transvaal Mus 35: 374–376Google Scholar
  23. 23.
    Holm E, Marais E (1992) Fruit chafers of southern Africa. Sigma, PretoriaGoogle Scholar
  24. 24.
    Hudson RR, Slatkin M, Maddison WP (1992) Estimation of levels of gene flow from DNA sequence data. Genetics 132:583–589PubMedGoogle Scholar
  25. 25.
    IUCN Standards and Petitions Working Group (2006) Guidelines for using the IUCN Red List categories and criteria. Version 6.2. Prepared by the standards and petitions working group of the IUCN SSC biodiversity assessments sub-committee in December 2006.
  26. 26.
    Juan C, Ibrahim KM, Oromi P, Hewitt GM (1996) Mitochondrial DNA sequence variation of Pimelia darkling beetles on the island of Tenerife (Canary Islands). Heredity 77:589–598PubMedCrossRefGoogle Scholar
  27. 27.
    Knowles LL, Futuyama DJ, Eanes WF (1999) Insight into speciation from historical demography in the phytophagous beetle genus Ophraella. Evolution 53:1846–1856CrossRefGoogle Scholar
  28. 28.
    Maddison DR, Maddison WP (2002) McClade 4: analysis of phylogeny and character evolution, version 4.05. Sinauer, SunderlandGoogle Scholar
  29. 29.
    Marjoram P, Donnelly P (1994) Pairwise comparisons of mitochondrial DNA sequences in subdivided populations and implications for early human evolution. Genetics 136:673–683PubMedGoogle Scholar
  30. 30.
    Miller J, Allsopp PG (2005) Phylogeography of the scarab beetle Antritrogus parvulus Britton (Coleoptera: Scarabaeidae) in south-eastern Queensland, Australia. Aust J Entomol 38: 189–196CrossRefGoogle Scholar
  31. 31.
    Monteiro A, Pierce NE (2000) Phylogeny of Bicyclus (Lepidoptera: Nymphalidae) inferred from COI, COII, and EF-1α gene sequences. Mol Phylogenet Evol 18:264–281CrossRefGoogle Scholar
  32. 32.
    Moritz C (1994) Defining “evolutionarily significant units” for conservation. TREE 9:373–375Google Scholar
  33. 33.
    Moritz C (1995) Use of molecular phylogenies for conservation.Philos Trans R Soc Lond Ser B 349:113–118CrossRefGoogle Scholar
  34. 34.
    Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New YorkGoogle Scholar
  35. 35.
    Nei M, Tajima F (1981) DNA polymorphism detectable by restriction endonucleases. Genetics 97:145–163PubMedGoogle Scholar
  36. 36.
    Neigel JE (2002) Is FST obsolete? Conserv Genet 3:167–173CrossRefGoogle Scholar
  37. 37.
    Perissinotto R, Smith TJ, Stobbia P (1999) Description of adult and larva of Ichnestoma pringlei n. sp. (Coleoptera Scarabaeidae Cetoniinae), with notes on its biology and ecology. Trop Zool 12:219–229Google Scholar
  38. 38.
    Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818PubMedCrossRefGoogle Scholar
  39. 39.
    Posada D, Crandall KA (2001) Intraspecific gene genealogies: trees grafting into networks. TREE 16:37–45PubMedGoogle Scholar
  40. 40.
    Posada D, Crandall KA, Templeton AR (2000) GeoDis: a program for the cladistic nested analysis of the geographical distribution of genetic haplotypes. Mol Ecol 9:487–488PubMedCrossRefGoogle Scholar
  41. 41.
    Purvis A, Gittleman JL, Cowlishaw G, Mace GM (2000) Predicting extinction risk in declining species. Proc R Soc Lond Series B, Biologcial Sciences 267:1947–1952CrossRefGoogle Scholar
  42. 42.
    Reed DH (2004) Extinction risk in fragmented habitats. Anim Conserv 7:181–191CrossRefGoogle Scholar
  43. 43.
    Roslin T (2001) Spatial population structure in a patchily distributed beetle. Mol Ecol 10:823–837PubMedCrossRefGoogle Scholar
  44. 44.
    Rozas J, Rozas R (1999) DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics 15:174–175PubMedCrossRefGoogle Scholar
  45. 45.
    Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  46. 46.
    Simon C, Frati F, Beckenbach AT, Crespi B, Liu H, Flook P (1994) Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved PCR primers. Ann Entomol Soc Am 87:651–701Google Scholar
  47. 47.
    Sole CL, Scholtz CH, Bastos AD (2005) Phylogeography of the Namib Desert dung beetles Scarabaeus (Pachysoma) MacLeay (Coleoptera: Scarabaeidae). J Biogeogr 32:75–84CrossRefGoogle Scholar
  48. 48.
    Swofford DL (2002) Paup. Phylogenetic analysis using parsimony (and other methods). Version 4. Sinauer, SunderlandGoogle Scholar
  49. 49.
    Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 129:585–595Google Scholar
  50. 50.
    Templeton AR, Sing CF (1993) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping. IV. Nested analyses with cladogram uncertainty and recombination. Genetics 134:659–669PubMedGoogle Scholar
  51. 51.
    Templeton AR, Boerwinkle E, Sing CF (1987) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping. I. Basic theory and an analysis of alcohol dehydrogenase activity in Drosophila. Genetics 117:343–351PubMedGoogle Scholar
  52. 52.
    Templeton AR, Routman E, Phillips CA (1995) Separating population structure from population history: a cladistic analysis of the geographical distribution of mitochondrial DNA haplotypes in the tiger salamander, Ambystoma tigrinum. Genetics 140:767–782PubMedGoogle Scholar
  53. 53.
    Thompson JD, Gibson TJ, Plewniak TF, Jeanmougin F, Higgins DG (1997) The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882CrossRefGoogle Scholar
  54. 54.
    Wakeley J, Hey J (1997) Estimating ancestral population parameters. Genetics 145:847–855PubMedGoogle Scholar
  55. 55.
    Zhang DX, Hewitt GM (1996) Nuclear integrations: challenges for mitochondrial DNA markers. TREE 11:247–251Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Ute Kryger
    • 1
  • Clarke H. Scholtz
    • 1
  1. 1.Department of Zoology and EntomologyUniversity of PretoriaPretoriaSouth Africa

Personalised recommendations