Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 126))

Summary

Ensemble clustering is a novel research field that extends to unsupervised learning the approach originally developed for classification and supervised learning problems. In particular ensemble clustering methods have been developed to improve the robustness and accuracy of clustering algorithms, as well as the ability to capture the structure of complex data. In many clustering applications an example may belong to multiple clusters, and the introduction of fuzzy set theory concepts can improve the level of flexibility needed to model the uncertainty underlying real data in several application domains. In this paper, we propose an unsupervised fuzzy ensemble clustering approach that permit to dispose both of the flexibility of the fuzzy sets and the robustness of the ensemble methods. Our algorithmic scheme can generate different ensemble clustering algorithms that allow to obtain the final consensus clustering both in crisp and fuzzy formats.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fern XZ, Brodley CE (2003) Random projection for high dimensional data clustering: a cluster ensemble approach. In: Fawcett T, Mishra N (eds) Proc 20th Int Conf Mach Learning, Washington, DC, USA. AAAI Press, Menlo Rark

    Google Scholar 

  2. Monti S, Tamayo P, Mesirov J, Golub T (2003) Consensus clustering: a resampling-based method for class discovery and visualization of gene expression microarray data. Mach Learning 52:91–118

    Article  MATH  Google Scholar 

  3. Topchy A, Jain A, Puch W (2005) Clustering ensembles: models of consensus and weak partitions. IEEE Trans Pattern Analysis Mach Intell 27:1866–1881

    Article  Google Scholar 

  4. Kuncheva L, Vetrov D (2006) Evaluation of stability of k-means cluster ensembles with respect to random initialization. IEEE Trans Pattern Analysis Mach Intell 28:1798–1808

    Article  Google Scholar 

  5. Kuncheva L (2004) Combining pattern classifiers: methods and algorithms. Wiley-Interscience, New York

    Book  MATH  Google Scholar 

  6. Strehl A, Ghosh J (2002) Cluster ensembles – a knowledge reuse framework for combining multiple partitions. J Mach Learn Research 3:583–618

    Article  MathSciNet  Google Scholar 

  7. Hu X, Yoo I (2004) Cluster ensemble and its applications in gene expression analysis. In: Chen YPP (ed) Proc. 2nd Asia-Pacific Bioinformatics Conf, Dunedin, New-Zealand. Australian Computer Society, Darlinghurst, pp 297–302

    Google Scholar 

  8. Dudoit S, Fridlyand J (2003) Bagging to improve the accuracy of a clustering procedure. Bioinformatics 19:1090–1099

    Article  Google Scholar 

  9. Bertoni A, Valentini G (2006) Ensembles based on random projections to improve the accuracy of clustering algorithms. In: Apolloni B, Marinaro M, Nicosia G, Tagliaferri R (eds) Proc 16th Italian Workshop Neural Nets, Vietri sul Mare, Italy. Springer, Berlin/Heidelberg, pp 31–37

    Google Scholar 

  10. Hadjitodorov S, Kuncheva L, Todorova L (2006) Moderate diversity for better cluster ensembles. Inf Fusion 7:264–275

    Article  Google Scholar 

  11. Achlioptas D (2003) Database-friendly random projections: Johnson-Lindenstrauss with binary coins. J Comp Sys Sci 66:671–687

    Article  MATH  MathSciNet  Google Scholar 

  12. Johnson WB, Lindenstrauss J (1984) Extensions of Lipshitz mapping into Hilbert space. Contemporary Math 26:189–206

    MATH  MathSciNet  Google Scholar 

  13. Bertoni A, Valentini G (2006) Randomized maps for assessing the reliability of patients clusters in DNA microarray data analyses. Artif Intell Medicine 37:85–109

    Article  Google Scholar 

  14. Eisen M, Spellman P, Brown P, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. PNAS 95:14863–14868

    Article  Google Scholar 

  15. Zadeh, L (1965) Fuzzy sets. Inf Control 8:338–353

    Article  MATH  MathSciNet  Google Scholar 

  16. Klement EP, Mesiar R, Pap E (2000) Triangular norms. Kluwer Academic Publishers, Dordrecht

    MATH  Google Scholar 

  17. Yang L, Lv H, Wang W (2006) Soft cluster ensemble based on fuzzy similarity measure. In: IMACS Multiconf Comp Eng Systems Appl, Beijing, China, pp 1994–1997

    Google Scholar 

  18. Golub T, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh ML, Downing JR, Caligiuri MA, Bloomfield CD, Lander ES (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286:531–537

    Article  Google Scholar 

  19. Bittner M, Meltzer P, Chen Y, Jiang Y, Seftor E, Hendrix M, Radmacher M, Simon R, Yakhini Z, Ben-Dor A, Sampas N, Dougherty E, Wang E, Marincola F, Gooden C, Lueders J, Glatfelter A, Pollock P, Carpten J, Gillanders E, Leja D, Dietrich K, Beaudry C, Berens M, Alberts D, Sondak V (2000) Molecular classification of malignant melanoma by gene expression profiling. Nature 406:536–540

    Article  Google Scholar 

  20. Dietterich T (2000) An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting and randomization. Mach Learn 40:139–158

    Article  Google Scholar 

  21. Avogadri R, Valentini G (2007) Fuzzy ensemble clustering for DNA microarray data analysis. In: Proc 4th Int Conf Bioinformatics and Biostatistics, Portofino, Italy. Springer, Berlin/Heidelberg, pp 537–543

    Google Scholar 

  22. Valentini G (2006) Clusterv: a tool for assessing the reliability of clusters discovered in DNA microarray data. Bioinformatics 22:369–370

    Article  Google Scholar 

  23. Bertoni A, Valentini G (2007) Model order selection for bio-molecular data clustering. BMC Bioinformatics 8:S7

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Avogadri, R., Valentini, G. (2008). Ensemble Clustering with a Fuzzy Approach. In: Okun, O., Valentini, G. (eds) Supervised and Unsupervised Ensemble Methods and their Applications. Studies in Computational Intelligence, vol 126. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78981-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78981-9_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78980-2

  • Online ISBN: 978-3-540-78981-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics