Predicate Encryption Supporting Disjunctions, Polynomial Equations, and Inner Products

  • Jonathan Katz
  • Amit Sahai
  • Brent Waters
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4965)

Abstract

Predicate encryption is a new paradigm generalizing, among other things, identity-based encryption. In a predicate encryption scheme, secret keys correspond to predicates and ciphertexts are associated with attributes; the secret key SKf corresponding to a predicate f can be used to decrypt a ciphertext associated with attribute I if and only if f(I) = 1. Constructions of such schemes are currently known for relatively few classes of predicates.

We construct such a scheme for predicates corresponding to the evaluation of inner products over Open image in new window (for some large integer N). This, in turn, enables constructions in which predicates correspond to the evaluation of disjunctions, polynomials, CNF/DNF formulae, or threshold predicates (among others). Besides serving as a significant step forward in the theory of predicate encryption, our results lead to a number of applications that are interesting in their own right.

References

  1. 1.
    Al-Riyami, S., Malone-Lee, J., Smart, N.: Escrow-free encryption supporting cryptographic workflow. Intl. J. Information Security 5(4), 217–229 (2006)CrossRefGoogle Scholar
  2. 2.
    Bagga, W., Molva, R.: Policy-based cryptography and applications. In: Financial Cryptography (2005)Google Scholar
  3. 3.
    Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryption. In: IEEE Symposium on Security and Privacy (2007)Google Scholar
  4. 4.
    Boneh, D., Boyen, X.: Efficient selective-ID identity based encryption without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, Springer, Heidelberg (2004)Google Scholar
  5. 5.
    Boneh, D., Boyen, X.: Secure identity based encryption without random oracles. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, Springer, Heidelberg (2004)Google Scholar
  6. 6.
    Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, Springer, Heidelberg (2004)Google Scholar
  7. 7.
    Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public-key encryption with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, Springer, Heidelberg (2004)Google Scholar
  8. 8.
    Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. SIAM J. Computing 32(3), 586–615 (2003)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In: Theory of Cryptography Conference (2005)Google Scholar
  10. 10.
    Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data. In: Theory of Cryptography Conference (2007)Google Scholar
  11. 11.
    Boyen, X., Waters, B.: Anonymous hierarchical identity-based encryption (without random oracles). In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, Springer, Heidelberg (2003)Google Scholar
  13. 13.
    Cocks, C.: An identity based encryption scheme based on quadratic residues. In: Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  14. 14.
    Gentry, C.: Practical identity-based encryption without random oracles. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In: ACM CCCS (2006)Google Scholar
  16. 16.
    Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In: Smart, N. (ed.) Eurocrypt 2008. LNCS, vol. 4965, Springer, Heidelberg (2008)Google Scholar
  17. 17.
    Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, polynomial equations, and inner products. Cryptology ePrint Archive, Report 2007/404Google Scholar
  18. 18.
    Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ciphertext attacks. In: STOC, pp. 427–437 (1990)Google Scholar
  19. 19.
    Ostrovsky, R., Sahai, A., Waters, B.: Attribute-based encryption with non-monotonic access structures. In: ACM CCCS (2007)Google Scholar
  20. 20.
    Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, Springer, Heidelberg (2005)Google Scholar
  21. 21.
    Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, Springer, Heidelberg (1985)CrossRefGoogle Scholar
  22. 22.
    Shi, E., Bethencourt, J., Chan, H.T.-H., Song, D.X., Perrig, A.: Multi-dimensional range queries over encrypted data. In: IEEE Symposium on Security and Privacy (2007)Google Scholar
  23. 23.
    Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, Springer, Heidelberg (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Jonathan Katz
    • 1
  • Amit Sahai
    • 2
  • Brent Waters
    • 3
  1. 1.University of Maryland 
  2. 2.UCLA 
  3. 3.SRI International 

Personalised recommendations