Skip to main content

Reachability of Uncertain Nonlinear Systems Using a Nonlinear Hybridization

  • Conference paper
Hybrid Systems: Computation and Control (HSCC 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4981))

Included in the following conference series:

Abstract

In this paper, we investigate nonlinear reachability computation in presence of model uncertainty, via guaranteed set integration. We show how this can be done by using the classical Müller’s existence theorem. The core idea developed is to no longer deal with whole sets but to derive instead two nonlinear dynamical systems which involve no model uncertainty and which bracket in a guaranteed way the space reachable by the original uncertain system. We give a rule for building the bracketing systems. In the general case, the bracketing systems obtained are only piecewise C k-continuously differential nonlinear systems and hence can naturally be modeled with hybrid automata. We show how to derive the hybrid model and how to address mode switching. An example is given with a biological process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.-H., Nicollin, X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems. Theoretical Computer Science 138, 3–34 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  2. Asarin, E., Dang, T., Girard, A.: Hybridization methods for the analysis of non-linear systems. Acta Informatica 43, 451–476 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Asarin, E., Maler, O., Pnueli, A.: Reachability analysis of dynamical systems having piecewise-constant derivatives. Theoretical Computer Science 138, 35–65 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bernard, O., Gouzé, J.-L.: Closed loop observers bundle for uncertain biotechnological models. Journal of Process Control 14, 765–774 (2004)

    Article  Google Scholar 

  5. Botchkarev, O., Tripakis, S.: Verification of hybrid systems with linear differential inclusions using ellipsoidal approximations. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 73–88. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  6. Chutinan, A., Krogh, B.H.: Computational techniques for hybrid systems verification. IEEE T. Automatic Control 48 (2003)

    Google Scholar 

  7. Doyen, L., Henzinger, T.A., Raskin, J.F.: Automatic rectangular refinement of affine hybrid systems. In: Pettersson, P., Yi, W. (eds.) FORMATS 2005. LNCS, vol. 3829, pp. 144–161. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  8. Girard, A.: Reachability of uncertain linear systems using zonotopes. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 291–305. Springer, Heidelberg (2005)

    Google Scholar 

  9. Guéguen, H., Zaytoon, J.: On the formal verification of hybrid systems. Control Engineering Practice 12, 1253–1267 (2004)

    Article  Google Scholar 

  10. Henzinger, T.A., Horowitz, B., Majumdar, R., Wong-Toi, H.: Beyond hytech: Hybrids systems analysis using interval numerical methods, vol. 1790, pp. 130–144 (2000)

    Google Scholar 

  11. Jaulin, L., Kieffer, M., Didrit, O., Walter, E.: Applied Interval Analysis: with examples in parameter and state estimation, robust control and robotics. Springer, London (2001)

    MATH  Google Scholar 

  12. Kieffer, M., Walter, E., Simeonov, I.: Guaranteed nonlinear parameter estimation for continuous-time dynamical models. In: Proceedings 14th IFAC Symposium on System Identification, Newcastle, Aus., pp. 843–848 (2006)

    Google Scholar 

  13. Kurzhanski, A.B., Varaiya, P.: Ellipsoidal techniques for hybrid dynamics: The reachability problem. In: Dayawansa, W.P., Lindquist, A., Zhou, Y. (eds.) New Directions and Applications in Control Theory. Lecture Notes in Control and Information Sciences, vol. 321, pp. 193–205. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  14. Lefebvre, M.-A., Guéguen, H.: Hybrid abstractions of affine systems. Nonlinear Analysis 65(6), 1150–1167 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  15. Müller, M.: Uber das fundamentaltheorem in der theorie der gewöhnlichen differentialgleichungen. Mathematische Zeitschrift 26, 619–645 (1927)

    Article  MathSciNet  Google Scholar 

  16. Nedialkov, N.S., Jackson, K.R., Corliss, G.F.: validated solutions of initial value problems for ordinary differential equations. Applied Mathematics and Computation 105, 21–68 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  17. Rauh, A., Kletting, M., Aschemann, H., Hofer, E.P.: Interval methods for simulation of dynamical systems with state-dependent switching characteristics. In: Proceedings of the 2006 IEEE International Conference on Control Applications, Munich, pp. 355–360 (2006)

    Google Scholar 

  18. Walter, W.: Differential inequalities and maximum principles: Theory, new methods and applications. Nonlinear Analysis, Theory, Methods & Applications 30(8), 4695–4711 (1997)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Magnus Egerstedt Bud Mishra

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ramdani, N., Meslem, N., Candau, Y. (2008). Reachability of Uncertain Nonlinear Systems Using a Nonlinear Hybridization. In: Egerstedt, M., Mishra, B. (eds) Hybrid Systems: Computation and Control. HSCC 2008. Lecture Notes in Computer Science, vol 4981. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78929-1_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78929-1_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78928-4

  • Online ISBN: 978-3-540-78929-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics