Abstract
In this paper, we investigate nonlinear reachability computation in presence of model uncertainty, via guaranteed set integration. We show how this can be done by using the classical Müller’s existence theorem. The core idea developed is to no longer deal with whole sets but to derive instead two nonlinear dynamical systems which involve no model uncertainty and which bracket in a guaranteed way the space reachable by the original uncertain system. We give a rule for building the bracketing systems. In the general case, the bracketing systems obtained are only piecewise C k-continuously differential nonlinear systems and hence can naturally be modeled with hybrid automata. We show how to derive the hybrid model and how to address mode switching. An example is given with a biological process.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.-H., Nicollin, X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems. Theoretical Computer Science 138, 3–34 (1995)
Asarin, E., Dang, T., Girard, A.: Hybridization methods for the analysis of non-linear systems. Acta Informatica 43, 451–476 (2007)
Asarin, E., Maler, O., Pnueli, A.: Reachability analysis of dynamical systems having piecewise-constant derivatives. Theoretical Computer Science 138, 35–65 (1995)
Bernard, O., Gouzé, J.-L.: Closed loop observers bundle for uncertain biotechnological models. Journal of Process Control 14, 765–774 (2004)
Botchkarev, O., Tripakis, S.: Verification of hybrid systems with linear differential inclusions using ellipsoidal approximations. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 73–88. Springer, Heidelberg (2000)
Chutinan, A., Krogh, B.H.: Computational techniques for hybrid systems verification. IEEE T. Automatic Control 48 (2003)
Doyen, L., Henzinger, T.A., Raskin, J.F.: Automatic rectangular refinement of affine hybrid systems. In: Pettersson, P., Yi, W. (eds.) FORMATS 2005. LNCS, vol. 3829, pp. 144–161. Springer, Heidelberg (2005)
Girard, A.: Reachability of uncertain linear systems using zonotopes. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 291–305. Springer, Heidelberg (2005)
Guéguen, H., Zaytoon, J.: On the formal verification of hybrid systems. Control Engineering Practice 12, 1253–1267 (2004)
Henzinger, T.A., Horowitz, B., Majumdar, R., Wong-Toi, H.: Beyond hytech: Hybrids systems analysis using interval numerical methods, vol. 1790, pp. 130–144 (2000)
Jaulin, L., Kieffer, M., Didrit, O., Walter, E.: Applied Interval Analysis: with examples in parameter and state estimation, robust control and robotics. Springer, London (2001)
Kieffer, M., Walter, E., Simeonov, I.: Guaranteed nonlinear parameter estimation for continuous-time dynamical models. In: Proceedings 14th IFAC Symposium on System Identification, Newcastle, Aus., pp. 843–848 (2006)
Kurzhanski, A.B., Varaiya, P.: Ellipsoidal techniques for hybrid dynamics: The reachability problem. In: Dayawansa, W.P., Lindquist, A., Zhou, Y. (eds.) New Directions and Applications in Control Theory. Lecture Notes in Control and Information Sciences, vol. 321, pp. 193–205. Springer, Heidelberg (2005)
Lefebvre, M.-A., Guéguen, H.: Hybrid abstractions of affine systems. Nonlinear Analysis 65(6), 1150–1167 (2006)
Müller, M.: Uber das fundamentaltheorem in der theorie der gewöhnlichen differentialgleichungen. Mathematische Zeitschrift 26, 619–645 (1927)
Nedialkov, N.S., Jackson, K.R., Corliss, G.F.: validated solutions of initial value problems for ordinary differential equations. Applied Mathematics and Computation 105, 21–68 (1999)
Rauh, A., Kletting, M., Aschemann, H., Hofer, E.P.: Interval methods for simulation of dynamical systems with state-dependent switching characteristics. In: Proceedings of the 2006 IEEE International Conference on Control Applications, Munich, pp. 355–360 (2006)
Walter, W.: Differential inequalities and maximum principles: Theory, new methods and applications. Nonlinear Analysis, Theory, Methods & Applications 30(8), 4695–4711 (1997)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ramdani, N., Meslem, N., Candau, Y. (2008). Reachability of Uncertain Nonlinear Systems Using a Nonlinear Hybridization. In: Egerstedt, M., Mishra, B. (eds) Hybrid Systems: Computation and Control. HSCC 2008. Lecture Notes in Computer Science, vol 4981. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78929-1_30
Download citation
DOI: https://doi.org/10.1007/978-3-540-78929-1_30
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-78928-4
Online ISBN: 978-3-540-78929-1
eBook Packages: Computer ScienceComputer Science (R0)