Theorem Proving Modulo Based on Boolean Equational Procedures

  • Camilo Rocha
  • José Meseguer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4988)


Deduction with inference rules modulo computation rules plays an important role in automated deduction as an effective method for scaling up. We present four equational theories that are isomorphic to the traditional Boolean theory and show that each of them gives rise to a Boolean decision procedure based on a canonical rewrite system modulo associativity and commutativity. Then, we present two modular extensions of our decision procedure for Dijkstra-Scholten propositional logic to the Sequent Calculus for First Order Logic and to the Syllogistic Logic with Complements of L. Moss. These extensions take the form of rewrite theories that are sound and complete for performing deduction modulo their equational parts and exhibit good mechanization properties. We illustrate the practical usefulness of this approach by a direct implementation of one of these theories in Maude rewriting logic language, and automatically proving a challenge benchmark in theorem proving.


Decision Procedure Propositional Logic Theorem Prove Equational Theory Sequent Calculus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Backhouse, R.: Program Construction: Calculating Implementations from Specifications. Willey, Chichester, UK (2003)Google Scholar
  2. 2.
    Barendregt, H.P., Barendsen, E.: Autarkic computations and formal proofs. Journal of Automated Reasoning 28(3), 321–336 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C. (eds.): All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350. Springer, Heidelberg (2007)zbMATHGoogle Scholar
  4. 4.
    de Recherche en, L.: Informatique. The CiME System (2007),
  5. 5.
    Dershowitz, N., Jouannaud, J.-P.: Rewrite systems. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science. Formal Methods and Semantics, ch. 6, vol. B, pp. 243–320. North-Holland, Amsterdam (1990)Google Scholar
  6. 6.
    Dijkstra, E.W., Scholten, C.S.: Predicate Calculus and Program Semantics. Springer, Heidelberg (1990)zbMATHGoogle Scholar
  7. 7.
    Dowek, G., Hardin, T., Kirchner, C.: Theorem proving modulo. J. Autom. Reasoning 31(1), 33–72 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Eker, S., Martí-Oliet, N., Meseguer, J., Verdejo, A.: Deduction, strategies, and rewriting. In: Martí-Oliet, N. (ed.) Proc. Strategies 2006, ENTCS, pp. 417–441. Elsevier, Amsterdam (2007)Google Scholar
  9. 9.
    Girard, J.-Y.: Proofs and Types. Cambridge Tracts in Theoretical Computer Science, vol. 7. Cambridge University Press, Cambridge (1989)zbMATHGoogle Scholar
  10. 10.
    Gries, D.: A calculational proof of Andrews’s challenge. Technical Report TR96-1602, Cornell University, Computer Science (August 28, 1996)Google Scholar
  11. 11.
    Gries, D., Schneider, F.B.: A Logical Approach to Discrete Math. In: Texts and Monographs in Computer Science, Springer, Heidelberg (1993)Google Scholar
  12. 12.
    Gries, D., Schneider, F.B.: Equational propositional logic. Inf. Process. Lett. 53(3), 145–152 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Hendrix, J., Ohsaki, H., Meseguer, J.: Sufficient completeness checking with propositional tree automata. Technical Report UIUCDCS-R-2005-2635, University of Illinois Urbana-Champaign (2005)Google Scholar
  14. 14.
    Hsiang, J.: Topics in automated theorem proving and program generation. PhD thesis, University of Illinois at Urbana-Champaign (1982)Google Scholar
  15. 15.
    Jacobson, N.: Basic algebra, vol. I. W. H. Freeman and Co., San Francisco, Calif (1974)zbMATHGoogle Scholar
  16. 16.
    Lifschitz, V.: On calculational proofs. Ann. Pure Appl. Logic 113(1-3), 207–224 (2001)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Łukasiewicz, J.: Aristotle’s Syllogistic, From the Standpoint of Modern Formal Logic. Oxford University Press, Oxford (1951)Google Scholar
  18. 18.
    Martí-Oliet, N., Meseguer, J.: Rewriting logic as a logical and semantic framework. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic, 2nd. edn., pp. 1–87. Kluwer Academic Publishers, 2002. First published as SRI Tech. Report SRI-CSL-93-05 (August 1993)Google Scholar
  19. 19.
    Meseguer, J., Thati, P.: Symbolic reachability analysis using narrowing and its application to verification of cryptographic protocols. Higher-Order and Symbolic Computation 20(1–2), 123–160 (2007)zbMATHCrossRefGoogle Scholar
  20. 20.
    Moss, L.S.: Syllogistic logic with complements (Draft 2007)Google Scholar
  21. 21.
    Rocha, C., Meseguer, J.: Five isomorphic Boolean theories and four equational decision procedures. Technical Report 2007-2818, University of Illinois at Urbana-Champaign (2007)Google Scholar
  22. 22.
    Rocha, C., Meseguer, J.: A rewriting decision procedure for Dijkstra-Scholten’s syllogistic logic with complements. Revista Colombiana de Computación 8(2) (2007)Google Scholar
  23. 23.
    Rocha, C., Meseguer, J.: Theorem proving modulo based on boolean equational procedures. Technical Report 2007-2922, University of Illinois at Urbana-Champaign (2007)Google Scholar
  24. 24.
    Simmons, G.F.: Introduction to topology and modern analysis. McGraw-Hill Book Co., Inc, New York (1963)zbMATHGoogle Scholar
  25. 25.
    Socher-Ambrosius, R., Johann, P.: Deduction Systems. Springer, Berlin (1997)zbMATHGoogle Scholar
  26. 26.
    Stehr, M.-O., Meseguer, J.: Pure type systems in rewriting logic: Specifying typed higher-order languages in a first-order logical framework. In: Owe, O., Krogdahl, S., Lyche, T. (eds.) From Object-Orientation to Formal Methods. LNCS, vol. 2635, pp. 334–375. Springer, Heidelberg (2004)Google Scholar
  27. 27.
    Viry, P.: Adventures in sequent calculus modulo equations. Electr. Notes Theor. Comput. Sci. 15 (1998)Google Scholar
  28. 28.
    Viry, P.: Equational rules for rewriting logic. Theoretical Computer Science 285, 487–517 (2002)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Camilo Rocha
    • 1
  • José Meseguer
    • 1
  1. 1.Department of Computer ScienceUniversity of Illinois at Urbana-ChampaignUrbana

Personalised recommendations