Skip to main content

Advertisement

SpringerLink
  • Log in
Book cover

Mathematical Epidemiology pp 19–79Cite as

  1. Home
  2. Mathematical Epidemiology
  3. Chapter
Compartmental Models in Epidemiology

Compartmental Models in Epidemiology

  • Fred Brauer7 
  • Chapter
  • 19k Accesses

  • 131 Citations

  • 19 Altmetric

Part of the Lecture Notes in Mathematics book series (LNMBIOS,volume 1945)

We describe and analyze compartmental models for disease transmission. We begin with models for epidemics, showing how to calculate the basic reproduction number and the final size of the epidemic. We also study models with multiple compartments, including treatment or isolation of infectives. We then consider models including births and deaths in which there may be an endemic equilibrium and study the asymptotic stability of equilibria. We conclude by studying age of infection models which give a unifying framework for more complicated compartmental models.

Keywords

  • Compartmental Model
  • Reproduction Number
  • Epidemic Model
  • Contact Rate
  • Endemic Equilibrium

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Download chapter PDF

References

  1. R.M. Anderson, H.C. Jackson, R.M. May, A.M. Smith: Population dynamics of fox rabies in Europe. Nature, 289, 765–771 (1981)

    CrossRef  Google Scholar 

  2. R.M. Anderson, R.M. May: Infectious Diseases of Humans. Oxford Science Publications, Oxford (1991)

    Google Scholar 

  3. F. Brauer, C. Castillo-Chavez: Mathematical Models in Population Biology and Epidemiology. Springer, New York (2001)

    MATH  Google Scholar 

  4. S. Busenberg, K.L. Cooke: Vertically Transmitted Diseases: Models and Dynamics. Biomathematics, Vol. 23. Springer, Berlin Heidelberg New York (1993)

    MATH  Google Scholar 

  5. C. Castillo-Chavez with S. Blower, P. van den Driessche, D. Kirschner, A.A. Yakubu (eds.): Mathematical Approaches for Emerging and Reemerging Infectious Diseases: An Introduction. Springer, Berlin Heidelberg New York (2001)

    Google Scholar 

  6. C. Castillo-Chavez, with S.Blower, P. van den Driessche, D. Kirschner, A.A. Yakubu (eds.): Mathematical Approaches for Emerging and Reemerging Infectious Diseases: Models, Methods and Theory. Springer, Berlin Heidelberg New York (2001)

    Google Scholar 

  7. C. Castillo-Chavez, K.L. Cooke, W. Huang, S.A. Levin: The role of long incubation periods in the dynamics of HIV/AIDS. Part 1: Single populations models. J. Math. Biol., 27, 373–98 (1989)

    CrossRef  MATH  MathSciNet  Google Scholar 

  8. C. Castillo-Chavez, H.R. Thieme: Asymptotically autonomous epidemic models. In: O. Arino, D. Axelrod, M. Kimmel, M. Langlais (eds.) Mathematical Population Dynamics: Analysis of Heterogeneity, Vol. 1: Theory of Epidemics. Wuerz, Winnipeg, pp. 33–50 (1993)

    Google Scholar 

  9. D.J. Daley, J. Gani: Epidemic Modelling: An Introduction. Cambridge Studies in Mathematical Biology, Vol. 16. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  10. K. Dietz: Overall patterns in the transmission cycle of infectious disease agents. In: R.M. Anderson, R.M. May (eds.) Population Biology of Infectious Diseases. Life Sciences Research Report, Vol. 25. Springer, Berlin Heidelberg New York, pp. 87–102 (1982)

    Google Scholar 

  11. K. Dietz: The first epidemic model: a historical note on P.D. En’ko. Aust. J. Stat., 30, 56–65 (1988)

    CrossRef  Google Scholar 

  12. S. Ellner, R. Gallant, J. Theiler: Detecting nonlinearity and chaos in epidemic data. In: D. Mollison (ed.) Epidemic Models: Their Structure and Relation to Data. Cambridge University Press, Cambridge, pp. 229–247 (1995)

    Google Scholar 

  13. A. Gumel, S. Ruan, T. Day, J. Watmough, P. van den Driessche, F. Brauer, D. Gabrielson, C. Bowman, M.E. Alexander, S. Ardal, J. Wu, B.M. Sahai: Modeling strategies for controlling SARS outbreaks based on Toronto, Hong Kong, Singapore and Beijing experience. Proc. R. Soc. Lond. B Biol. Sci., 271, 2223–2232 (2004)

    Google Scholar 

  14. J.A.P. Heesterbeek, J.A.J. Metz: The saturating contact rate in marriage and epidemic models. J. Math. Biol., 31: 529–539 (1993)

    CrossRef  MATH  MathSciNet  Google Scholar 

  15. H.W. Hethcote: Qualitative analysis for communicable disease models. Math. Biosci., 28, 335–356 (1976)

    CrossRef  MATH  MathSciNet  Google Scholar 

  16. H.W. Hethcote: An immunization model for a hetereogeneous population. Theor. Popul. Biol., 14, 338–349 (1978)

    CrossRef  MathSciNet  Google Scholar 

  17. H.W. Hethcote: The mathematics of infectious diseases. SIAM Rev., 42, 599–653 (2000)

    CrossRef  MATH  MathSciNet  Google Scholar 

  18. H.W. Hethcote, S.A. Levin: Periodicity in epidemic models. In: S.A. Levin, T.G. Hallam, L.J. Gross (eds.) Applied Mathematical Ecology. Biomathematics, Vol. 18. Springer, Berlin Heidelberg New York, pp. 193–211 (1989)

    Google Scholar 

  19. H.W. Hethcote, H.W. Stech, P. van den Driessche: Periodicity and stability in epidemic models: a survey. In: S. Busenberg, K.L. Cooke (eds.) Differential Equations and Applications in Ecology, Epidemics and Population Problems. Academic, New York, pp. 65–82 (1981)

    Google Scholar 

  20. E. Hopf: Abzweigung einer periodischen Lösungen von einer stationaren Lösung eines Differentialsystems. Berlin Math-Phys. Sachsiche Akademie der Wissenschaften, Leipzig, 94, 1–22 (1942)

    Google Scholar 

  21. W.O. Kermack, A.G. McKendrick: A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. B Biol. Sci., 115, 700–721 (1927)

    Google Scholar 

  22. W.O. Kermack, A.G. McKendrick: Contributions to the mathematical theory of epidemics, part. II. Proc. R. Soc. Lond. B Biol. Sci., 138, 55–83 (1932)

    MATH  Google Scholar 

  23. W.O. Kermack, A.G. McKendrick: Contributions to the mathematical theory of epidemics, part. III. Proc. R. Soc. Lond. B Biol. Sci., 141, 94–112 (1932)

    Google Scholar 

  24. L. Markus: Asymptotically autonomous differential systems. In: S. Lefschetz (ed.) Contributions to the Theory of Nonlinear Oscillations III. Annals of Mathematics Studies, Vol. 36. Princeton University Press, Princeton, NJ, pp. 17–29 (1956)

    Google Scholar 

  25. J. Mena-Lorca, H.W. Hethcote: Dynamic models of infectious diseases as regulators of population size. J. Math. Biol., 30, 693–716 (1992)

    MATH  MathSciNet  Google Scholar 

  26. W.H. McNeill: Plagues and Peoples. Doubleday, New York (1976)

    Google Scholar 

  27. W.H. McNeill: The Global Condition. Princeton University Press, Princeton, NJ (1992)

    Google Scholar 

  28. L.A. Meyers, B. Pourbohloul, M.E.J. Newman, D.M. Skowronski, R.C. Brunham: Network theory and SARS: predicting outbreak diversity. J. Theor. Biol., 232, 71–81 (2005)

    CrossRef  MathSciNet  Google Scholar 

  29. D. Mollison (ed.): Epidemic Models: Their Structure and Relation to Data. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  30. M.E.J. Newman: The structure and function of complex networks. SIAM Rev., 45, 167–256 (2003)

    CrossRef  MATH  MathSciNet  Google Scholar 

  31. G.F. Raggett: Modeling the Eyam plague. IMA J., 18, 221–226 (1982)

    MATH  Google Scholar 

  32. H.E. Soper: Interpretation of periodicity in disease prevalence. J. R. Stat. Soc. B, 92, 34–73 (1929)

    CrossRef  Google Scholar 

  33. S.H. Strogatz: Exploring complex networks. Nature, 410, 268–276 (2001)

    CrossRef  Google Scholar 

  34. H.R. Thieme: Asymptotically autonomous differential equations in the plane. Rocky Mt. J. Math., 24, 351–380 (1994)

    CrossRef  MATH  MathSciNet  Google Scholar 

  35. H.R. Thieme: Mathematics in Population Biology. Princeton University Press, Princeton, NJ (2003)

    MATH  Google Scholar 

  36. H.R. Thieme, C. Castillo-Chavez: On the role of variable infectivity in the dynamics of the human immunodeficiency virus. In: C. Castillo-Chavez (ed.) Mathematical and Statistical Approaches to AIDS Epidemiology. Lecture Notes in Biomathematics, Vol. 83. Springer, Berlin Heidelberg New York, pp. 200–217 (1989)

    Google Scholar 

  37. H.R. Thieme, C. Castillo-Chavez: How may infection-age dependent infectivity affect the dynamics of HIV/AIDS? SIAM J. Appl. Math., 53, 1447–1479 (1989)

    CrossRef  MathSciNet  Google Scholar 

  38. P. van den Driessche, J. Watmough: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci., 180, 29–48 (2002)

    CrossRef  MATH  MathSciNet  Google Scholar 

  39. G.F. Webb: Theory of Nonlinear Age-Dependent Population Dynamics. Marcel Dekker, New York (1985)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Mathematics, University of British Columbia, 1984, Mathematics Road, Vancouver, BC, V6T 1Z2, Canada

    Fred Brauer

Authors
  1. Fred Brauer
    View author publications

    You can also search for this author in PubMed Google Scholar

Editor information

Editors and Affiliations

  1. Department of Mathematics, University of British Columbia, Vancouver, B.C. V6T 1Z2, Canada

    Fred Brauer

  2. Department of Mathematics and Statistics, University of Victoria, 3060 STN CSC, Victoria, B.C. V8W 3R4, Canada

    Pauline van den Driessche

  3. Center for Disease Modeling Department of Mathematics and Statistics, York University, Toronto, Ontario, M3J 1P3, Canada

    Jianhong Wu

Rights and permissions

Reprints and Permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brauer, F. (2008). Compartmental Models in Epidemiology. In: Brauer, F., van den Driessche, P., Wu, J. (eds) Mathematical Epidemiology. Lecture Notes in Mathematics, vol 1945. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78911-6_2

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/978-3-540-78911-6_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78910-9

  • Online ISBN: 978-3-540-78911-6

  • eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not logged in - 34.239.173.144

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.