Correlation Analysis with Continuous Time Models

  • Rolf Isermann
  • Marco Münchhof


The correlation methods for single periodic test signals, which have been described in Chap. 5 provide only one discrete point of the frequency response at each measurement with one measurement frequency. At the start of each experiment, one must wait for the decay of the transients. Due to these circumstances, the methods are not suitable for online identification in real time. Thus, it is interesting to employ test signals which have a broad frequency spectrum and thus excite more frequencies at once as did the non-periodic deterministic test signals.


Correlation Function Impulse Response Power Spectral Density Continuous Time Model Broadband Noise 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bendat JS, Piersol AG (2010) Random data: Analysis and measurement procedures, 4th edn. Wiley-Interscience, New YorkzbMATHGoogle Scholar
  2. Chow P, Davies AC (1964) The synthesis of cyclic code generators. Electron Eng 36:253–259Google Scholar
  3. Cummins JC (1964) A note on errors and signal to noise ratio of binary crosscorrelation measurements of system impulse response. Atom Energy Establishment, Winfrith (AEEW), DorsetGoogle Scholar
  4. Davies WDT (1970) System identification for self-adaptive control. Wiley-Interscience, LondonzbMATHGoogle Scholar
  5. Doyle FJ, Pearson RK, Ogunnaike BA (2002) Identification and control using Volterra models. Communications and Control Engineering, Springer, LondonGoogle Scholar
  6. Eykhoff P (1964) Process parameter estimation. Progress in Control Engineering 2:162–206Google Scholar
  7. Godman TP, Reswick JB (1956) Determination of th system characteristics from normal operation modes. Trans ASME 78:259–271Google Scholar
  8. Hänsler E (2001) Statistische Signale: Grundlagen und Anwendungen. Springer, BerlinzbMATHGoogle Scholar
  9. Hughes M, Norton A (1962) The measurement of control system characteristics by means of cross-correlator. Proc IEE Part B 109(43):77–83CrossRefGoogle Scholar
  10. Ljung L (1999) System identification: Theory for the user, 2nd edn. Prentice Hall Information and System Sciences Series, Prentice Hall PTR, Upper Saddle River, NJGoogle Scholar
  11. Papoulis A (1962) The Fourier integral and its applications. McGraw Hill, New YorkzbMATHGoogle Scholar
  12. Pearson RK (1999) Discrete-time dynamic models. Topics in chemical engineering, Oxford University Press, New YorkGoogle Scholar
  13. Pintelon R, Schoukens J (2001) System identification: A frequency domain approach. IEEE Press, Piscataway, NJCrossRefGoogle Scholar
  14. Rödder P (1973) Systemidentifikation mit stochastischen Signalen im geschlossenen Regelkreis – Verfahren der Fehlerabschätzung. Dissertation. RWTH Aachen, AachenGoogle Scholar
  15. Rödder P (1974) Nichtbeachtung der Rückkopplung bei der Systemanalyse mit stochastischen Signalen. Regelungstechnik 22:154–156zbMATHGoogle Scholar
  16. Sage AP, Melsa JL (1971) System identification. Academic Press, New YorkzbMATHGoogle Scholar
  17. Solodownikow WW (1964) Einführung in die statistische Dynamik linearer Regelsysteme. Oldenbourg Verlag, MünchenGoogle Scholar
  18. Tulleken HJAF (1990) Generalized binary noise test-signal concept for improved identification-experiment design. Automatica 26(1):37–49zbMATHCrossRefMathSciNetGoogle Scholar
  19. Zimmerschied R (2002) Entwurf von Anregungssignalen für die Identifikation nichtlinearer dynamischer Prozesse. Diplomarbeit. Institut für Regelungstechnik, TU Darmstadt, DarmstadtGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Technische Universität Darmstadt, Institut für AutomatisierungstechnikDarmstadtGermany

Personalised recommendations