Spectral Analysis Methods for Periodic and Non-Periodic Signals

Chapter

Abstract

Calculating the spectrum of a signal is important for many applications. To be able to automatically calculate the spectrum and also treat signals of arbitrary shape, there is a special interest in methods for numerical determination of the Fourier transform. These methods are typically implemented on digital computers, which makes it necessary to sample and store the signal before it is transformed. This brings along special ramifications that are discussed in later sections of this chapter. As the data sequences can be quite long, one is also especially interested in computationally efficient implementations of the Fourier transform on digital computers.

Keywords

Fast Fourier Transform Discrete Fourier Transform Window Function Chirp Signal Short Time Fourier Transform 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Best R (2000) Wavelets: Eine praxisorientierte Einführung mit Beispielen: Teile 2 & 8. Tech Mess 67(4 & 11):182–187; 491–505CrossRefGoogle Scholar
  2. Bluestein L (1970) A linear filtering approach to the computation of discrete Fourier transform. IEEE Trans Audio Electroacoust 18(4):451–455CrossRefGoogle Scholar
  3. Brigham EO (1988) The fast Fourier transform and its applications. Prentice-Hall Signal Processing Series, Prentice Hall, Englewood Cliffs, NJGoogle Scholar
  4. Bruun G (1978) A-transform DFT filters and FFT’s. IEEE Trans Acoust Speech Signal Process 26(1):56–63CrossRefGoogle Scholar
  5. Chu E, George A (2000) Inside the FFT black box: Serial and parallel fast Fourier transform algorithms. Computational mathematics series, CRC Press, Boca Raton, FLGoogle Scholar
  6. Cooley JW, Tukey JW (1965) An algorithm for the machine calculation of complex fourier series. Math Comput 19(90):297–301MATHCrossRefMathSciNetGoogle Scholar
  7. Frigo M, Johnson SG (2005) The design and implementation of FFTW3. Proc IEEE 93(2):216–231CrossRefGoogle Scholar
  8. Gentleman WM, Sande G (1966) Fast Fourier Transforms: for fun and profit. In: AFIPS ’66 (Fall): Proceedings of the fall joint computer conference, San Francisco, CA, pp 563–578CrossRefGoogle Scholar
  9. Gibbs JW (1899) Fourier series. Nature 59:606Google Scholar
  10. Goertzel G (1958) An algorithm for the evaluation of finite trigonometric series. Am Math Mon 65(1):34–35MATHCrossRefMathSciNetGoogle Scholar
  11. Hamming RW (2007) Digital filters, 3rd edn. Dover books on engineering, Dover Publications, Mineola, NYGoogle Scholar
  12. Harris FJ (1978) On the use of windows for harmonic analysis with the discrete Fourier transform. Proceedings of the IEEE 66(1):51–83CrossRefGoogle Scholar
  13. Heij C, Ran A, Schagen F (2007) Introduction to mathematical systems theory : linear systems, identification and control. Birkhäuser Verlag, BaselMATHGoogle Scholar
  14. Isermann R (1991) Digital control systems, 2nd edn. Springer, BerlinGoogle Scholar
  15. Kammeyer KD, Kroschel K (2009) Digitale Signalverarbeitung: Filterung und Spektralanalyse mit MATLAB-Übungen, 7th edn. Teubner, WiesbadenGoogle Scholar
  16. Poularikas AD (1999) The handbook of formulas and tables for signal processing. The Electrical Engineering Handbook Series, CRC Press, Boca Raton, FLGoogle Scholar
  17. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2007) Numerical recipes: The art of scientific computing, 3rd edn. Cambridge University Press, Cambridge, UKMATHGoogle Scholar
  18. Proakis JG, Manolakis DG (2007) Digital signal processing, 4th edn. Pearson Prentice Hall, Upper Saddle River, NJGoogle Scholar
  19. Qian S, Chen D (1996) Joint-time frequency analysis: Methods and applications. PTR Prentice Hall, Upper Saddle River, NJGoogle Scholar
  20. Rader CM (1968) Discrete Fourier transforms when the number of data samples is prime. Proc IEEE 56(6):1107–1108CrossRefGoogle Scholar
  21. Schoukens J, Vandersteen K, Barbé, Pintelon R (2009) Nonparametric preprocessing in system identification: A powerful tool. In: Proceedings of the European Control Conference 2009 - ECC 09, Budapest, Hungary, pp 1–14Google Scholar
  22. Sorensen H, Heideman M, Burrus C (1986) On computing the split-radix FFT. Speech Signal Proc Acoust 34(1):152–156CrossRefGoogle Scholar
  23. Stearns SD (2003) Digital signal processing with examples in MATLAB. CRC Press, Boca Raton, FLMATHGoogle Scholar
  24. Verhaegen M, Verdult V (2007) Filtering and system identification: A least squares approach. Cambridge University Press, CambridgeMATHCrossRefGoogle Scholar
  25. Welch P (1977) On the variance of time and frequency averages over modified periodograms. In: Acoustics, Speech, and Signal Processing, IEEE International Conference on ICASSP ’77, vol 2, pp 58–62CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Technische Universität Darmstadt, Institut für AutomatisierungstechnikDarmstadtGermany

Personalised recommendations